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ABSTRACT

The primary aim of our project has been to investigate the role played by
the initial rovibrational excitation of a molecule in enhancing the cross o
sections and, therefore, the rates of dissociative electron attachment to the .

molecule. An enhancement of the attachment rate results in the enhancement of

;
the production of negative ion beams. The processes of dissociative electron %

attachment and of resonant vibrational excitation are complementary processes 3

as the intermediate resonant anion state of the molecule, formed by electrorn ¥

impact, either can autodetach the electron or can dissociate itself. )

Therefore, as a further part of the present investigations we have explored M

the contribution of the resonant state to the cross sections for vibrational i

. ¢
‘ excitation of the mwolecule. Our first project was to study the effect of é
)

initial vibrational excitation on the rate of production of negative atoumic 2

lithium ions via the process of dissociative electron attachment to lithium };

dimers. The rate is enhanced by almost an order of magnitude if the molecule ?E

2

is initially vibrationally excited; however, the effect is certainly more £

dramatic for hydrogen molecules than for lithium dimers. In the second %

project we developed a simple model for the resonant vibrational excitation of 3

(3

a molecule. 1In this model the potential energy curves of the electronic *

states of the molecule and of its resonant anion are replaced by those of two 3

simpic harmonic oscillators of different frequencies and the width of the }

h

reéesonance is taken to be constant. Simple recursion relations among ¢

) excitation amplitudes are used for evaluation of vibrational excitation cross ;
sections for any traasitioan. ;
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The principal aim of the investigations under the present Grant (number
AFOSR-84—-0143) has been to study the effect of vibrational excitation of a
molecule (say, AB) on the production of light negative ion beams (for example,
beams of Li-, H_, D_, etc.) via the process of dissociative electron
attachment. The intermediate resonant state AB_, which as one possibility
leads to dissociative attachment (AB ~ A + B-), can also lead to
vibrational excitation (AB + AB (Vf) + e) following the autodetachment of
the electron. Thus the processes of dissociative attachment and resonant
vibrational excitation are best investigated as two complementary projects of
the same endeavorl. During the tenure of the Grant (September 1, 1984 -
August 31, 1987) we concentrated on various different projects. The first
project involved the investigations of the electron attachment to the lithium
dimers. The second project concerned determination of the resonant as well as
nonresonant vibrational excitation of lithium dimers. For the resonant
vibrational excitation we developed a simple and reasonable model which
allowed rapid evaluation of the vibrationally inelastic and superelastic
amplitudes using recursion relations.

The details of various investigations carried out during the three years
of our endeavor are as follows:

Dissociative Electron Attachment to Lithium Dimers

Previous theoretical2 and experiment311 studies have shown that in the
case of molecular hydrogen the cross sections for dissociative attachment are
strongly enhanced if the molecule HZ is initially rovibrationally excited.

In order to ascertain whetheor similar enhauczient of attachment cross secziions
occurs for other molecules we investigated the process of electron attachment
to lithium dimers which are isovalent with the molecular hydrogen. It is

found that analogous to molecular hydrogen the rate of electron attachment to
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lithium dimers by the process of dissociative attachment is strongly enhanced
if the dimers are initially vibrationally excited.

The fact that both the lithium dimers and the hydrogen molecules are
isovalent leads to similarities between the two molecules as far as the

. 4
configurations of the electronic states are concerned . For example, the

lowest electronic states of the negative molecular ions with configurations (1¢

2

+
symmetry, namely,ziu . However, unlike hydrogen molecule, the lithium dimers

2 2 2 . 2 ~ .
) (lou) (ZOg) (Zou) for Li, and (IGg) (lcu) for HZ have similar

possess a large polarizability and a weak bond strength which makes the ground

- - 2.+
state of Liza true bound state. In the case of HZ’ on the other hand, the Zu

state is a true bound state only for internuclear separations R larger than
2.9 a.u. and an autodetaching state for smaller values of R. The first

+ 2 2
excited state with symmetry 228 and configurations (158) (l:u) (20g) (ZCU)2

for Li; and (lcg) (lou)2 for H2 is a partly Feshbach and 2 partly shape

resonance in nature for both molecular anions. This resonance is the

lowest-lying resonance of Li2 and because of its nature (namsly Feshbach) the
resonance is expected to have a small width and a long lifezime. This
resonant state is essentially responsible for dissociative electron attachment

to lithium dimers.

Potential curves of the electronic states of Li2 and Li, relevant to

the attachment process are shown in Figure 1. Due to its autodetaching nature
the A 22; electronic state of Li; exhibits a complex potential energy curve
whose real part along with the potential curve of the ground 1S;electronic
state of the neutral L12 is shown in the Figure. The two curves cross at R =
6.5 a.u. so that only for internuclear separations smaller than 6.5 a.u. the A

state is autodetaching. Detailed orbital optimized CI calculationsa reveal

that the X and the A states have their respective potential minimum at 5.1

b Sty
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a.u. and 5.9 a.u. The imaginary part of the complex potential energy curve of

the A state of Li£-is related to the width of this resonant state. For

internuclear separations smaller than 6.5 a.u. this resonant state can
autodetach into L12 + e. In this autodetachment process [ ZZ; - lig + e ]

the lowest contributing partial wave is an s-wave., Thus Wigner's threshold
law for the width of this state implies - (R) = c.k(R), where k(R) is the wave

number of the electron emitted at internuclear separation R and ¢ is a

constant. To obtain this constant ¢ the fully optimized orbital exponents of

the CI wave functions were smoothly extrapolated from the variationally stable

region (R 2 6.5 a.u.) into the autodetaching region (R { 6.5 a.u.) to obtain
the matrix elements coupling the discrete and the continuum states. These
matrix elements are related to the autodetachment width by Fermi's golden
rule. This procedure yielded ¢ = 0.0143 a.u. Thus the width of the A

state of Li; , which is primarily responsible for dissociative electron
attachment to lithium dimers, as a function of internuclear separation is
given, in atomic units, by '(R) = 0.0143.k(R) and is shown in Figure 2. The
small value of the width is characteristic of the Feshbach nature of the
resonance.

The similarities between lithium dimers and hydrogen molecules suggest
that theoretical approaches used successfully in the past for investigating
the cross sections and rates for dissociative electron attachment to H2 carn
be employed for similar investigations for Liz. Thus local width resonant
scattering theory is used for obtaining the cross sections as a function of
the incident electron energy and the corresponding rates as a function of the
electron temperature T ( or, equivalently, the average electron energy E =

3kT/2.) for dissociative electron attachment to Li e+ Li.~» Li+ Li.

2’ 2
2.+ - .
The contribution of only the Lo resonance of L12 is taken into account for
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calculating the attachment cross sections. Figure 3 shows the results of such !
a calculation. The structure near the peak of the cross sections, as observed ‘

in this Figure, is possibly an artifact of the limited range of internuclear '

separations over which the resonant nuclear wave function is extended. \
Analogous to molecular hydrogen the cross sections for dissociative electron
attachment to lithium dimers, as a function of the incident electron energy,
show a rapid increase leading to a peak in the cross section, followed by a )
gradual decrease. The difference, however, is that the cross section peak is
right at the energetic threshold in the case of hydrogen while the attachment
cross section in the case of lithium peaks at an energy somewhat above the ;
energetic threshold. This difference in behavior could be explained in terms
of the Franck-Condon factors relating the vibrational levels of the neutral
and the anion electronic states.

First part of the calculations involved computation of the energy values
and the corresponding wave functions of various vibrational levels of the

- 1

lithium dimers. Highly accurate potential curves of Liz and Li2 are
'

available in published 1iterature4. The energy values for various

-

vibrational levels using these potential curves agree quite favorably, as

shown in the Table I below, with the experimental energy values.

- > >

6 . .
Recent measurements of the rate constant k(T) for dissociative electron
attachment to highly vibrationally excited lithium dimers indicate that this
-8 3 -1
rate for thermal electrons is about 10 c¢cm sec . 1In order to convert the
present attachment cross sections into attachment rates the cross sections are

fitted to a simple analytical form:

= . { —(F= (1)
Cpa (E) = © exp {-(E Epeak)/Eo}

peak
where opeak is the peak attachment cross section and Eo is a constant. Using N

this analytical form for the attachment cross sections it is possible to
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obtain the attachment rates as well in an analytical form if a Maxwellian
distribution is assumed for the electron energies. The attachment rate as a

function of the electron temperature is then given by

'exp(-BEpeak/ZE) 1+

MW
+
[aa kel

m peak

x
P
)
h
[
——
N
~
tm
C

The average electron energy E is related to the electron temperature T by E =
3kT/2.

It is observed that the cross sections as well as the rates of Li
formation are enhanced if the molecule Liz is initially vibrationally
excited. The factors by which the peak attachment cross sections are

enhanced, on vibrationally exciting the lithium molecule initially, a.e

7
summarized and compared with the corresponding factors for H2 in the Table

I1 below.

The reason for enhancement of the peak attachment cross section is that,
as the internal energy of the molecule is initially increased via vibrational
excitation, the range of internuclear separations R over which electron
capture occurs is increased due to an increased vibrational amplitude.

Finally, the rates of electron attachment to Li2 (that is, the rates of
production of Li beams) are calculated as a function of the electron
temperature T using Eq.(2) and are shown in Figure 4. The rate is as low as
10-11 cm sec = when the m-lecule is in its lowest vibrational level and the
rate increases by almost an order of magnitude for each quantum of vibrational
excitation of the molecular Liz. It is thus plamsible that the total
attachment rate can approach the experimental value of 10—8 <:m3se<:—1 as the

initial excitation of the molecule is raised to the v = 10 level. The

enhancement of the attachment rate, which is a direct consequence of the

2% LR U L D I T P N e e
A i e e A R A o P



TABLE I. Vibrational energy levels of Li

2'

of L12 Present calculation Experimental value
0 0.02170 0.02170
1 0.06459 0.06463
2 0.10683 0.10691
3 0.14836 0.14853
4 0.18914 0.18950
5 0.22910 0.22980
6 0.26806 0.26943
7 0.30556 0.30838

. - . o . i e e e s . . e e V. e S S e . o e . o ol o o . = A . o e (o o o bt

TABLE 11. Enhancement factors for electron attachment to Li,.

2
Initial vibrational level,v, Factor by which the peak attachment
the molecule is in. cross section is enhanced over that
for v=0.
2 . 3
L, H2 (theory) H2 (experiment)
1 7.4 32.5 30 + 10
2 16.4 465 500 + 175
T L T R et g it VL TV o S e o o, ‘. oy N N \R" Y \ *'3\-,'\‘
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TABLE III. Rates of dissociative electron attachment to vibrationally excited S
lithium dimers at various electron temperatures T. E is the 5
average electron energy and v refers to the vibrational level of
Liz. X
_______ e e h
_ Attachment rate (in cm sec ') 5
E = 3kT/2 (eV) v=0 v =1 v =2 o
0.1 S sy (e asia1y ;
0.2 .368(-12) L445(-11) .139(-10) )
0.3 <311(-11) .351(-10) .104(-9)
0.4 .796(-11) .869(-10) +252(-9) ;
0.5 .130(-10) .139(-9) .399(-9) E
0.6 -171(-10) .181(-9) .514(-9) A
0.7 .201(-10) .211(-9) .596(~9) 3
0.8 «221(~10) .230(-9) «647(~9) ;
0.9 +233(-10) «241(-9) .677(~9) ]
1.0 +239(-10) +246(-9) +689(~%)
1.1 «241(-10) .247(-9) .690(~9) 4
1.2 .240(-10) «245(~9) .684(-9)
1.3 .236(-10? «241(-9) .671(-9)
1.4 .232(~10) «236(~9) .656(-9)
1.5 «226(-10) .230(-9) .638(-9)
1.6 .220(-10) .223(~9) -619(-9) ',
1.7 +213(-10) <216(~9) .599(-9) Z
1.8 «207(-10) «209(-9) «579(-9) i
1.9 .200(-10) .202(-9) .559(-9) ;
2.0 .193(-10) .195(-9) .540(-9) V

P e
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enhancement of the attachment cross section, is expected for any distribution Ky
of the electron energies. It is to be noted that for the isovalent molecule "
) HZ as well the maximum predicted rate for electron attachment via the 3
process of dissociative attachment 157 about 10-8 cm3sec-1. gg
Wy
Analogous to molecular hydrogen, the lithium dimers exhibit an :&
enhancement of the cross sections as well as of the rates of dissociative §
electron attachment if they are vibrationally excited. Detailed calculations %
have been carried out only for the lowest three vibrational levels of the ?!
dimers. 1In the immediate future these calculations will be extended to higher a
o
vibrational levels upto and including the endoergic regime. Experimental é
y
observations of rates of electron attachment to lithium indicate that this :5
rate can be as high as 10-8 cm3sec—1 when the molecule L12 is in the 3
vibrational level v = 10. 3
1
In the case of molecular hydrogen it has been established that the ,i
rotational excitation of the molecule also aids in the enhancement of the Eg
v
electron attachment rate; however, the enhancement factor is larger for g
initial vibrational excitation than for initial rotational excitation. Recent .J
experimental observations6 on the electron attachment to lithium dimers, on jE
the other hand, seem to suggest that initial rotational excitation plays -%
little role in controlling the attachment to Liz. A theoretical ,:
investigation of the effect of initial rotational excitation on the rate of Li ;i
formation via the process of dissociative electron attachment to Li2 will be &
made within the resonance scattering model. '
3
Resonant Vibrational Excitation of Molecular Lithium ‘{
We have developed8 a simple and reasonable model for resonant li
vibrational excitation of molecules. In this model the potential curves of the S
molecule and of its resonant anion state are replaced by those of §
N
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one-dimensional simple harmonic oscillators of different frequencies and
curvatures and the width of the resonance is taken to be constant. The model
obviously works best for excitation of low lying levels. A schematic
representation of the potential energy curves of an arbitrary molecule AB and
of its resonant anion AB by linear harmonic oscillators is shown in Figure

5. 1In the earlier parts of our investigations we noted that for the case of
equal frequency oscillators it is possible to obtain recursion relations among
the excitation amplitudes. However, on realizing that the origin of the
recursion relation among amplitudes, for the equal frequency case, is really a
similar relation among the corresponding Franck-Condon factors, it became
natural to investigate9 in detail the recursion relations among the
Franck-Condon factors for a two—center harmonic oscillator system. Using
these recursion relatiohs of two-center harmonic oscillator matrix elements we
have been able to obtain recursion relations among the resonant vibrational
excitation amplitudes even when the frequencies of the two harmonic
oscillators are unequal. If the amplitude, A(mn), for excitation from the
initial level with vibrational quantum number m to the final level with

vibrational quantum number n is written as
2 1
2 (T ) " a(m—n;g)
A(m—ne) = -—(5_— KK, »

then a(ms»n) satisfies8 the following recursion relations:

2

200
[2n(m2+m?)-4axo_(Q+l)+(a)+a)_)2+~—a—'-] a(m--n;e) + 4uxo_5m'n
0

-2m_2(20)/0)0)m[(n+1)ma(m—-n+1) + nma(m—-n— 1 ;e)]

-(@>-0) { [(n+1)(n+2)]a(m—n+2;¢) + [n(n-1)]atm—n-2;¢) } =0

with Q=[e-E+mu+(0-0)2-A+iT2)o._.
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Figure 5. A schematic representation of the potential energy curves of the

molecule AB and its resonant anion AB by linear harmonic
oscillators.
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Here € 1s the energy of the incident electron,u and «_ are the
frequencies of the two oscillators, I is the resonance width, r is the
relative separation of the oscillators, L is the reduced mass of the nuclei
andwo=ﬁ/ur2.6E isdefined in Figure 5. The level shift A is taken to be zero
in the present calculations. Note that when either n or m is zero the
recursion relation among the excitation amplitudes reduces to a three-term
recursion relation. Furthermore, amplitude for any transition -- inelastic or
superelastic —- can be obtained from a mere knowledge of a(0+0), a(l+1) and
a(0+1) only. Figure 6 shows the results of such a calculation for the
vibrational excitation of molecular nitrogen, which is treated as a test case
in the present calculations. It is worth noting that the spectacular peaks in
the excitation cross sections for molecular nitrogen are bettar reproduced by
using unequal frequency oscillators. A similar calculation is done using this
simple model to predict the cross sections for the vibrational excitation of
Liz. The vibrational excitation cross sections for molecular lithium are
displayed in Figure 7. It is easy to verify that the first five vibrational
levels of the simple harmonic oscillators utilized in the present calculations
have the same energy levels, within 5%, as the actual vibrational levels of
the ground electronic states of these two molecules. It is not surprising,
based on the similarities between H2 and Liz, that the excitation cross
sections for molecular lithium as shown in Figure 7 are almost structureless.
All of the cross sections show only one peak, and the location of the peak is
roughly the same for all transitions. We note in passing that in order to use
the above recursion relation for obtaining the vibrational excitation cross
sections it is necessary to know the amplitude for vibrationally elastic cross
section which in turn could be obtained by summing the contributions of

various partial waves for a given electron-molecule interaction. Recently
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Figure 6. Cross sections for the resonant vibrational excitation of molecular ;
nitrogen by the impact of low energy electrons. Solid circles S
represent the experimental values of the respective cross sections '

from G. J. Schulz, Phys. Rev. 135, A988 (1964).
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Figure 7. Cross sections for the resonant vibrational excitation of molecular
lithium by the impact of low energy electrons.
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during such an investigatiogj) we calculated the second Born contribution of v

long range forces to higher partial wave phase shifts. -

Nonresonant Vibrational Excitation of Molecular Lithium v

t
As one possible nonresonant process for the vibrational excitation of a '

molecule we investigated the process of radiative decay from the excited
electronic states of the molecule. For the excitation of the vibrational )
levels of the ground Xlzg state of lithium molecule we considered the
following two step process. In the first step, the molecule is excited from
its ground electronic state to a higher singlet electronic state either by
electron impact or by photon pumping. Schematically,

+ +
e+Li, &I , v) L1, &L
I+ - 1.+
. < s .
L12 (X g vi) + hy L12 (A °C

In the second step, the electronically excited molecule undergoes a rapid

,Blrx)+e
u

,Blr). ;
u "

W]
radiative decay to an excited vibrational level of the ground electronic .

state. ) 1.4 1 ) 1+
L12 (A ’Zu . Br.u) -+ L12 (X g Vf) + hv .

LM

Our calculations11 of the relative cross sections for excitation of higher

vibrational levels of the ground electronic state of molecular lithium by this

-

nonresonant process indicate that in general the excitation occuring via the

formation of the A electronic state is more efficient than via the formation

X

of the B electronic state. Furthermore, this process populates all

vibrational levels of the ground electronic state upto about v = 9 with high

xS

probability for both electron collisional excitation as well as the photon :

pumping of the A state. This fact has recently been utilized12 by

investigators for obtaining vibrationally excited molecular lithium in the

-

-_d &,

laboratory.




R R R I T I A AT TR A T A T T I T N I T I U U Y I ' TN Y

Finally, an updated list of all the publications and presentations
carried out under the tenure of the present Grant is provided in the

appendices A and B.

A Personal Note

The kind support of the Air Force Office of Scientific Research, for
which we are very grateful, has so far allowed us to investigate the role
played by the initial vibrational excitation of molecular lithium in enhancing
the rate of production of negative ions of atomic lithium via the process of
dissociative elctron attachment. As part of these endeavors we also
investigated the resonant and nonresonant vibrational excitation of lithium
dimers. We are continuing our theoretical investigations, under Grant Number
AFOSR-87-0342, on the production of light negative ions (hydrogen and its
heavier isotopes) by dissociative attachment. Furthermore, with the aim of
having an effective neutral particle beam, we are in the process of obtaining
a realistic electron energy distribution in the hydrogen source. For this
purpose we have developed a novel technique for solving the Boltzmann
equation. We will soon be using this technique for numerically obtaining the
electron energy distribution in a hydrogen source which contains a realistic

mixture of atomic and molecular hydrogen.
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Appendix A: Publications

During the tenure of the present Grant, AFOSR 84-0143, the following papers

were published in various refereed journals. Reprints of some of these papers
follow this report.

A. Review Article

1. "Vibrational excitation and dissociative attachmeut", J.M. Wadehra, in
Nonequilibrium Vibrational Kinetics, M. Capitelli, ed. (Springer-Verlag,
New York, 1986) p. 191-232,

Refereed Journals

+
"Vibrational excitatipn of Li, (} 12 ) via electron or photon
excitation of the A Zu and™B Iu gstates", J. M. Wadehra and H.
H. Michels, Chem. Phys> Lett. 114" 380 (1985).

“"The second Born contribution of long-range forces to higher partial wave
phaseshifts", J.M. Wadehra, J. Phys. Bl19, L761 (1986).

"Exact evaluation and recursion relations of two-center harmonic

oscillator matrix elements", P.J. Drallos and J.M. Wadehra, J. Chem.
Phys. 85, 6524 (1986).

"Elastic Scattering of positrons and electrons by argon’, Sultana N. Nzhar
and J.M. Wadehra, Phys. Rev. A35, 2051 (1987).

"Positronium formation from Li and Na atoms using pseudopotential”,
Sultana N. Nahar and J.M. Wadehra, Phys. Rev. A35, 4533 (1987).

"Contributions of higher partial waves to the elastic scattering amplitude
for various long range interactions'", J.M. Wadehra and Sultana N. Nahar,
Phys. Rev. A36, 1458 (1987).

"A simple model for the resonant vibrational excitation of molecules and

its application to Li, and NZ"’ J.M. Wadehra and P.J. Drallos, Phys.
Rev. A36, 1148 (1987)%

Conference Proceedings

"Dissociative attachment to lithium dimers”, J.M. Wadehra, Proceedings of
the Fourth International Symposium on the Production and Neutralization

of Negative lons and Beams, J. Alessi, ed. pp. 547-554 (American
Institute of Physics, 1987).

10. "Mutual neutralization - three body effects", J.M¥. Wadehra, Proceedings
of the Fourth International Symposium on the Production and
Neutralization of Negative Ions and Beams, J. Alessi, ed. pp. 59-68
(Awerican Institute of Physics, 1987).
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Appendix B: Presentations

During the tenure of the Grant, AFOSR 84-0143, the following presentations
were made at various national and international meetings. Abstracts of some
of these presentations follow this report.

A.

1.

B.

4.

10.

T T N T e e gl U e P T e Ve A i e Ve A S R VT

Invited

"Mutual neutralization - three body effects"; presented at the Fourth
International Symposium on the Production and Neutralization of Negative
Ions and Beams, Upton, New York, October 27-31, 1986.

Contributed

"Dissociative Attachment in Low-Energy e+Li,. Collisions", (with H.H.
Michels); presented at the 37th Gaseous Eléectronics Conference, Boulder,
Colorado, October 9-12, 1984.

"Dissociative electron attachement to molecular lithium", (withk H.H.
Michels); presented at the Fourteenth International Conference on the
Physics of Electronic and Atomic Collisions, Palo Alto, Califormia, July
24-30, 1985.

"Vibrational excitation of diatomic molecules during resonance scattering
of electrons” (with P.J. Drallos); presented at the Thirty Eighth Annual
Gaseous Electronics Conference, Monterey, California, October 15-18,
1985.

"Elastic scattering of positrons and electrons from argon", (with Sultana
N. Nahar); presented at the 18th Annual Meeting of the Divisiorn of
Electron and Atomic Physics, Eugene, Oregon, June 18-20, 1986.

"Dissociative electron attachment to the isotopes of molecular hvdrogen";
presented at the Thirth-~Ninth Annual Gaseous Electronics Conference,
Madison, Wisconsin, October 7-10, 1986.

"Li production by dissociative electron attachment to Li "; presented
at the Fourth International Symposium on the Produ-tion &nd
Neutralization of Negative Ions and Beams, Upton, Ne - York, October
27-31, 1986.

"Closed form expressions for the contributions of higher partial waves to
the elastic scattering amplitude for various long range potentials",
(with Sultana N. Nahar); presented at the 1987 annual meeting of the
Division of Atomic, Molecular and Optical Physics, Cambridge,
Massachusetts, May 18-20, 1987,

"Charge transfer processes during the collisions of positrons and protons
with atomic hydrogen", (with Sultana N. Nahar) presented at the 1987
annual meeting of the Division of Atomic, Molecular and Optical Physics,
Cambridge, Massachusetts, May 18-20, 1987.

"Elastic scattering of positrons from argon", (with Sultana N. Nahar);
presented at the Fifteenth International Conference on the Physics of
Electronic and Atomic Collisions, Brighton, United Kingdom, July 22-:8,
1987.
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12,

13.

14,
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"A simple model for the resonant vibrational excitation of molecules",
(with P.J. Drallos); presented at the Fifteenth International Conference
on the Physics of Electronic and Atomic Collisions, Brighton, United
Kingdom, July 22-28, 1987.

"Elastic scattering of positrons from argon", (with Sultana N. Nahar)
presented at the NATO Advanced Research Workshop on Atomic Physics with
Positrons, University College London, United Kingdom, July 15-17, 1987,

"Positronium formation from atomic hydrogen", (with Sultana N. Nahar)
presented at the NATO Advanced Research Workshop on Atomic Physics with
Positrons, University College London, United Kingdom, July 15-17, 1987,

"A simple model for the resonant vibrational excitation of molecules",
(with P.J. Drallos) presented at Satellite Meeting on Electron-molecule
Scattering and Photoionisation, Daresbury, United Kingdom, July 18-19,
1987.

"Time evolution of electron and positron swarms in neon", (with P.J.
Drallos) presented at the 40th Annual Gaseous Electronics
Conference, Atlanta, Georgia, October 13-16, 1987.
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Nonequilibrium Vibrational Kinetics
Editor: M. Capitelli

1. Introduction.
By M. Capitelli

2. Vibrational Kinetics, Dissociation, and lonization of Diatomic
Molecules Under Nonequilibrium Conditions.
By M. Cacciatore, M. Capitelli, S. De Benedictis, M. Dilonardo, and
C. Gorse (With 34 Figures)

3. Analytical Theory of Vibrational Kinetics of Anharmonic
Oscillators.
By B. F. Gordiets and S. Zhdanok (With 2 Figures)

4. Vibration-Vibration and Vibration-Translation Energy Transter,
Including Multiquantum Transitions in Atom-Diatom and
Diatom-Diatom Collisions.

By G. D. Billing

5. Vibrational Energy Transfer in Collisions Involving Free Radicals.
By I. W. M. Smith (With 6 Figures)

6. Dynamics of Reactions Involving Vibrationally Excited Molecules.
By V. Aquilanti and A. Lagana (With 8 Figures)

7. Vib}ational Excitation and Dissociative Attachment.
By J. M. Wadehra (With 14 Figures)

8. Vibrational Distribution and Rate Constants for Vibrational
Energy Transfer.
By Ph. Bréchignac and J.-P. E. Taran (With 30 Figures)

9. Isotope Separation by Vibration-Vibration Pumping.
By J. W. Rich and R. C. Bergman (With 11 Figures)

10. Vibrational Kinetics and Reactions of Polyatomic Molecules in
Nonequilibrium Systems.
By V. D. Rusanov, A. A. Fridman, and G. V. Sholin

11. Coupling of Vibrational and Electronic Energy Distributions in
Discharge and Post-Discharge Conditions.
By M. Capitelli, C. Gorse, and A. Ricard (With 15 Figures)
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7. Vibrational Excitation and Dissociative Attachment R
J.M.Wadehra ' ;
With 14 Figures .:
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The -process of dissociative electron attachment to molecules is known to be one of c
the main sources of production of negative ions in gaseous discharges, plasma :(
switches, and gas lasers. In this process, a diatomic (or polyatomic) molecule,
under the impact of an electron, dissociates into its component atoms (or smaller N
molecular species) while the incident electron attaches itself to one of the com- 2
ponent products. The rate of negative ion production via dissociative attachment z
can be significantly increased, for both homonuclear molecules (for example, HZ) X
and heteronuclear molecules (for example, HC1), if the molecule initially has Y
stored internal energy in the form of rovibrational excitation. Schematically,
for electron impact on a molecule AB, a
- . ¥
e+ AB A+ B (dissociative electron attachment), )
: . . . . U
e+ AB(vy) - e+ AB(vf) (vibrational excitation by electron impact). (
W]
This chapter reviews the resonance model in general and its application, in par-
ticular, to the process of dissociative attachment (DA) of electrons to various ﬂ
diatomic homonuclear and heteronuclear molecules like H,, N5, CO, and HC1. It alsc O
discusses the related problem of vibrational excitation (VE), via resonance forma- QZ
tion, of these molecules by electron impact. Ho attempt will be made to present a ﬂf
0
paper-by-paper historical view of the topics since this has been accomplished in W
a number of other review articles. Rather, an attempt will be made to present the =t
. . : X ¢
results in as simple a manner as possible so that the present review might serve h:
as a starting point for an investigator new to this area. Emphasis will be placed s
on the most recent results. s
Some of the comprehensive review articles and books dealing with DA are [7.1-8]. 4
’ A popular account of the process of dissociative electron attachment is given in '“
W
{7.9]. The recent review articles on VE of molecules by electron impact include
[7.10-15]. Py
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7.1 The Resonance Model at
¢
7.1.1 Qualitative Remarks
W
One model that has been quite successful in explaining the DA and VE of diatomic ﬂ
molecules is the resonance model, in which the projectile electron is temporarily é
trapped by the target molecule. The molecular anion (or the resonant state) thus t
formed has a finite lifetime and it can either autodetach, leading to VE of the ¢
molecule or, if the lifetime is sufficiently large, it can lead to DA forming a .
neutral atom and an atomic anion. Thus ﬁ
- 3
—— A +B (DA) }
e + AB(v.) - AB"(res) ;‘
L aB(ve) + e (VE) ',
A schematic representation of the resonance model is shown in Fig.7.1, which shows \
the potential curves of the neutral molecule AB and its anion (resonant state) h
AB™. The two curves cross at internuclear separation R =R, so that for R>Rg the i,
resonance turns into a bound state. The nuclei, initially rovibrating in state g
0
Y
.
(Y
V.
1
3
O
W
..
v7(R) U
e A+8
VofR)
o A48~
¢
(!
\
h
. R, R R, —\V © t
INTERNUCLEAR SEPARATION R :
P
Fig.7.1. The resonance wodel. Here V4{R) and V'(R) are the potential curves of the
neutral moleryle AB and the resonant state AB™. The resonant state is formed by \
capture of an electron with energy ¢ by the molecule AB :
J
\
J
192 :.
(
t
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(Vi‘di) under the influence of the potential VO(R). move under the influence of

VT (R) after capturing the electron. The probability of capture of an electron

with energy ¢ depends on the internuclear separation R and, classically speaking,
it peaks at R =Rc (known as the capture radiué) where V'(RC) -VO(RC) =¢. After anion
formation, the nuclei begin to separate if the potential curve V (R) is repulsive
and begin to gain kinetic energy at the expense of electronic energy. Due to its
resonant nature, the anion, at any internuclear separation R, can autodetach the
electron leaving the nuclei in une of the rovibrational states of the potential
VO(R). The final rovibrational state (vf,Jf) that the neutral molecule achieves
depends on the kinetic energy gained by the nuclei (as indicated by the dotted

line in Fig.7.1) and on the selection rules governing the transition. If, on the
other hand, the nuclei in the anion state can separate to internuclear separations
R >RS without autodetachment having occurred, the detachment of the electron be-
comes energetically impossible and the dissociative attachment becomes unavoidable.
The internuclear separation RS beyond which the molecular anion becomes stable
against autodetachment is called the stabilization radius. The fact that the mole-
cular anion is capable of autodetaching the electron implies that it has a complex
potential energy curve, E (R) =V (R) -%—ir(R). The real part gives the usual poten-
tial energy curve of the anjon {as shown in Fig.7.1) and the imaginary part is re-
lated to the Tifetime of the resonant anion state. This can be seen by noting that
the time dependence of the nuclear wave function g(R) of the resonant state is given
by

() = exp( LRI

so that ’
2, ~r(R)t)
l&(R) exp(—;(,—)-} ;

where T(R) is the width of the resonance, indicating that h/T is the lifetime of
the resonant state. Figure 7.1 also shows the nuclear wave function £ as a function
of R. Note that for internuclear separations R between RC and Rs’ the envelope of
[g(R)[2 decreases with R because of the possibility of autodetachment. For R >Rs,
since the autodetachment of the electron is energetically not allowed, the width

of the resonance becomes zero and hence Ig(R)i2 has constant amplitude which de-
termines the cross section for the dissociative electron attachment.

A few noteworthy points of this model are the following: first, the dissociative
electron attachment and the vibrational excitation of the molecule are two possible
decay channels, apart from electronic excitation etc., resulting from a particular
resonance state. Thus a calculation of the cross sections for the dissociative elec-
tron attachment to a molecule will provide resonant contributions (of that parti-
cular resonant state) to the cross sections for vibrational excitation of the mole-
cule as a bonus and vice versa. Second, in explaining the vibrational excitation
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by this resonance model, it was implicitly assumed that the transition from the
resonant state V (R) to the neutra) state VO(R) after autodetachment is a Franck-
Condon transition, that is, an instantaneous transition with no change in nuclear
velocities or positions. This is a so-called local complex potential model. This is
obviously true only if the energy of the projectile electron is much greater than
the vibrational spacing. At very low impact energies or if the vibrational spacing
of the molecule is relatively large, a description of the DA and VE processes using
a nonlocal complex potential for the resonant state is essential since the neutral
molecule must accept only quanta of vibrational energy for its vibrational excita-
tion. Third, in the cases of some molecules it might be possible, for certain elec-
tron energies, to form more than one intermediate resonant state. Alternatively,
the resonant anion state may decay into more than one electronic state of the neu-
tral molecule. In such cases, the total width I'(R) is the sum of various partial
widths —each partial width corresponding to a certain transition between the re-
sonant anion state (or states) and the neutral molecular state (or states).

During a resonance formation, the time spent by the projectile electron in the
vicinity of the target molecule is much larger —by several orders of magnitude —
than the normal transit time. For example, a 10 eV electron, normally taking
1071 (~ag/velocity) to transit a molecule, might be trapped for almost 1071
(~h/r) if it forms a resonance with the target molecule with an average width of
~0.1 eV. The effect of the resonance formation is then to strongly distort the
target wave function. There are several mechanisms by which the electron could be
trapped by the molecular target to form the resonant anion state. For example, on
impact the electron could excite the molecular target and thereby iose sufficient
energy to hinder its own escape. The energy of the resonant state then lies below
that of the excited target state. This is a type 1 or Feshbach or closed-channel
resonance. Befare autodetaching, the trapped electron must gain energy by reverting
the target molecule back into its lower energy state. This type of resonance is re-
Tatively narrow (that is, has a long lifetime) since the trapped electron is forced
to affect the electrons of the target molecule dynamically for autodetachment to
occur. Another possibility is that the electron encounters the target in a confi-
guration of. nonzero angular momentum. The projectile electron then gets trapped in
the centrifugal potential barrier of the target from which it eventually tunnels
out. This trapping mechanism obviously depends on the shape of the potential of
the target state. This is a type 11 or shape or open-channel resonance.

Whatever the mechanism of the electron trapping, the lifetime of the resonance
is determined by its width. To classify the various limits of the resonances, one
has to compare the lifetime h/T of the resonance, with the average vibrational
period of the nuclei in the resonant state. If hu is the average energy of the vib-
rational quanta in the resonant state, then the condition h/T <1/ implies that
during the 1ifetime of the resonance, the nuciei hardly have an opportunity to
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vibrate. This is the impulse limit since the incoming electron effectively provides
an impulse to the target without staying with it for a Tong time. Similarly, the
condition h/r >1/w implies the compound state limit since in this case the nuclei
make a large number of vibrations during the lifetime of the resonance. Finally,

if h/r~1/w, one has the boomerang limit. In the boomerang case, one needs to con-
sider only the interference between the single outgoing and a single reflected
nuclear wave. An important characteristic of the boomerang limit is that the re-
sonance width T decreases on increasing the internuclear separation R [7.16].

7.1.2 Quantitative Discussion

A quantitative analysis using the nonlocal formalism of the application of the
resonance model to the dissociative attachment and vibrational excitation of di-
atomic molecules has been given [7.17,18]. In this analysis, following Fano [7.19]
one views a resonance as a discrete state embedded in and interacting with a con-
tinuum. If q represents the totality of all electronic coordinates, including those
of the projectile, then in the Born-Oppenheimer approximation, the wave function

of the discrete state representing the resonance can be written in the product form
¢(q,R)£(R). Here ¢ is the normalized electronic wave function and ¢ is the nuclear
wave function of the resonant state. The internuclear separation R appears only
parametrically in the electronic part ¢. The total Hamiltonian H(q,R) can be written
as the sum of the electronic Hamiltonian He](q,R) and the nuclear kinetic energy
term TN(R),

H(a,R) = Hgy(a,R) + To(R) . (7.1.1)

A typical member of the set of continuum functions representing the nonresonant
scattering, in the Born-Oppenheimer approximation, is we(q,R)xv(R). Here Xy is the
vibrational wave function of the target and wc(q,R) is the properly antisymmetrized
electronic wave function that takes into account all the target electrons and the
projectile electron. The energy of the projectile ¢ is part of the total energy E;
E =Ev +e, Ev being the vibrational energy of the target molecule. It is convenient
to choose Ev:O =0. Asymptotically, b approaches a form that is the product of a
plane wave [with amplitude A(k)], representing a free electron of energy ¢, and
the electronic state cof the target molecule: wzsy =A(k) exp(ik-r)wil.

The electronic parts of the discrete and the continuum states are orthonorma-
lized as

[ dg ¢*(q,R)e(q,R) = 1 , (7.1.22)
[ da ¥I(q.R)6_\(qR) = (e - ¢') ,  and (7.1.2b)
[ da 6%(a:R)v_(asR) = 0 (7.1.2¢)
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for al) R since R appears only parametrically in the electronic wave functions.
The electronic energy V™ (R) associated with the discrete state is

VI(R) = [ dq #*(q,R)Hgq8(quR) (7.1.3)

and that associated with the continuum set of states is

[ da w:.He]wC = [Vp(R) + els(c - ¢') (7.1.3b)

where VO(R) is the potential curve of the target molecule. The vibrational wave
functions satisfy

(Ty(R) + Vo(R)Ix, (R) = Ex,(R) . (7.1.4)

The total Hamiltonian is thus diagonalized in the subspace of the continuum func-
tions,

[ dR [ dq x;. w:.H(q,R)wexv [ drR X;.[TN + Vp(R) + €lé(e - e')x,

(7.1.5)

(Ev +e)s(e - ¢') [ dR x:.xv =E6vv.6(c -€')

The matrix element governing the interaction between the discrete state and the
continuum states is

V(esR) = [ dq o*(q,R)H v (aR) . (7.1.6)

The complete wave function of the electron-molecule system in the configuration
interaction form can be written as

¥(a,R) = o(q,R)E(R) + Z [ de f (c)v (q,R)x,(R) . (7.1.7)
A .

ft is required to satisfy the Schrodinger equation
[H(Q;R) - E]\l’(q,R) =0 . (7.1.8)

The functional coefficients fv(e) are determined from the expression obtained by

premultiplying (7.1.8) by w:.(q,R)x;.(R) and integrating over all the electronic
and nuclear coordinates, that is,

[ dR [ da vi.x§ [H(Q.R) - EJ¥(q,R) = 0 (7.1.9)

along with the boundary conditions. If Xvi is the initial vibrational state of the
target molecule, then the incoming waves are possible only in the term v =V, of the
sum in (7.1.7). Substituting for ¥ from (7.1.7) into (7.1.9) and using the incom-
ing wave boundary conditions for v =vy, one obtains

1

+ [ RV R)E (7.1.10)
E - EV - € + 10

fv(c) = évvié(E - EV -e) +
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Next, the differential equation satisfied by the nuclear wave function £(R) of
the discrete state is derived from the expression obtained by premultiplying (7.1.8)
by ¢*(q,R) and integrating over all electronic coordinates, that is, from

| dg ¢*(q.R)[H(q,R) - E]¥(q,R) = 0 . (7.1.11)

Again using (7.1.7) for v in (7.1.11), one obtains

[T((R) + V(R) - EJE(R) + [ dR' K(R,R')E(R') = -V(E - E, ,R)x, (R) , (7.1.12a)
1 1

where
K(R,R'}) = Z x;(R')xv(R)[A(R,R';E - Ev) - % ir(R,R';E - EV)] s (7.1.12b)
v

with

' _ V(e,R V’.l e,R'
BRR'GE - E) = P [ de ~J—T¢%;F€-:;~l :

(where P indicates the principal value) and
T(R.R'E ~ E ) = 2nV(E - E,R)V*(E - E ,R")

Equation (7.1.12a) for the resonant nuclear wave function £(R) is an integrodif-
ferential equation with a nonlocal kernel. Here, 4 and I' are the level shift and
the level width, respectively. Some of the assumptions made implicitly in arriving
at the result (7.1.12a) are: (a) the orientation of the internuclear axis is fixed
in space so that the rotation of the molecule is of little concern, (b) degeneracy
arising from the different possible directions of the projectile electron relative
to the internuclear axis is omitted, and (c) multiplicities of the molecular states
are not considered. These assumptions were made to simplify our presentation and

it is possible to obtain the most general results by relaxing these assumptions
{7.18].

The nonlocal equation (7.1.12a) can be reduced to a Tocal equation by the follow-
ing assumption. The level shift and the Tevel width functions & and T depend on
E-E, =h2k$/2m, which is the energy of the scattered electron when the target
molecule undergoe$ the transition 0 »v. The assumption is that if either the elec-
tron energy is large or the vibrational spacing is small, then during the vibra-
tional excitation Vi Ve the energy of the electron is not significantly changed.
Under such circumstances one can either replace Ev by Evi (that is, E -Ev by the
incident electron energy ci) or £ -Ev by the local classical electron energy
VT(R) -VO(R) shzkz(R)/Zm. The first choice will maintain the unitarity of the
S matrix but will give nonzero cross sections at the threshold and the second
choice will give zero cross sections at the threshold while minimizing any possi-
bility of unitarity violation [7.20]. In either case, T and & will become indepen-
dent of the vibrational quantum number v. The sum in (7.1.12b) is over all open
vibrational levels since the condition E ~Ev >0 is satisfied only for open channels.
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If the contribution of all closed vibrational channels is negligible, then using
the closure property

Z Xy (R )x, (R) = 6(R' - R)
v

in (7.1.12b), (7.1.12a) reduces to a local equation

(Ty(R) + VI(R) + a(Rye;) - —} ir(Ryey) - EJ(R) = -V(c;R)x, (R) (7.1.13)
1
where
2
A(Re;) = P [de -Lv—éc—'lclL and
1

_ 2

I‘(R,ci) = ZWIV(ei,R)[

Note that it is the coupling between the discrete and the continuum states that
leads to a complex potential and thus turns a discrete state into an autodetaching
resonant state. The term on the right-hand side of {7.1.13) is called variously the
electron entry amplitude or the feeding term or the source term of the resonant
state. The Jocal equation (7.1.13) is the starting point for most of the semiempiri-
cal calculations of the dissociative attachment and vibrational excitation processes
[7.16,21]. The validity and the range of applicability of the local complex potential
approach have been analyzed in detail (7.22,23]. The complex potential appearing in
(7.1.13), due to the assumptions made above, does not depend on the orientation of
R but only on its magnitude. This observation suggests that x(R) and Xvi(R) in
(7.1.13) can be decomposed into partial waves to separate out the angular dependence:

g(R} = er CJF(R)YerrW)/R ,

AR RRL R

1

Then QJ(R) satisfies the radial equation

("2d2+hzd"(d"+l)+v'a A(R.e.) - 4 iT(R -E)r R

‘m'd—Rz‘ T (R) + A(R,e;) - 5 iT(R,¢ey) "J.i()

= -V(Ei‘R)Xv.J.(R) R (7.1.14)
iYi
where Xvids is the wave function of the initial rovibrational state of the target

molecule. The resonant nuclear wave function EJ(R) is obtained by directly inte-
grating (7.1.14) subject to the boundary conditions

EJ(R =0)=0 , and (7.1.15a)
EJ(R + @) 0 if E < \J'(m)
U N T S S A C N (7.1.15b)
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with h2K2/2M =€ -V" (=), M being the reduced mass of the nuclei and h{!) the ¥
spherical Hankel function of the first kind.
Sometimes it is convenient to use electronic wave functions y, that are momen- A
) tum normalized rather than energy normalized as in (7.1.2b}. The relationship be-
, tween the two functions is ﬁ
- )
2.% .
be = (mkAE) 0 3
1
with ¢ =h%Z/2m. Then, in the local formalism, Y
. 2 2 =
r(R,e) = (2mmk/h“)|V{k,R)] . O
where V(k,R) is the electronic coupling matrix element evaluated by using the mo- %
mentum-normalized electronic wave functions. A summary of the properties of the Q
Y
energy-normalized and the momentum-normalized continuum functions is given in the 2
w §
appendix to this chapter.
7.1.3 Cross Section for Dissociative Attachment :‘
The cross section for the process of dissociative electron attachment '5
e+ AB A +B 4
+
is obtained by comparing the flux of the outgoing ion-atom pairs with the flux of ‘ﬁ
the incoming electrons [7.24]. The quantum mechanical expression for the flux Jf
density associated with a wave function vy is '
fid
]
J = (h/m)Im{y*wy} . W
For R »x, the total outward flux of the fon-atom pairs scattered per unit solid ﬁ¢
angle is OQ
(h/M) Imi£R)vE (R) ) -RR? ‘
)
This flux should be averaged over the orientation of the molecule since the direc- (
tion of R is random. Thus the net outward flux becomes
1 5 hK 2,2 _ 1 kK 2 X
ﬁdeﬂlé(R)lR =z W R o

where gJ(R) is the solution of (7.1.14) and J is the total angular momentum of the
resonant state. The incident electron flux density is A2(ki)hki/m, where A(k), the _\

amplitude of the plane wave representing the electron, is (1/8+7) or (mk/8r3h2)1/2

for momentum-normalized or energy-normalized functions, respectively. The cross sec- 2:
tion for dissociative electron attachment then becomes .
&

_ 1 m 1 hK .. 2 &,

A (ki i R »
}
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7.1.4 Cross Section for Vibrational Excitation

As a prelude to deriving an expression for the cross section for the vibrational
excitation of a molecule

e(k;) + AB(v,) - e(ks) + AB(v)

we observe that the total electronic Hamiltonian can be written as

a7

Hel = He1 + Te(r) + VeT s (7.1.173)
where HZ], Te’ and VeT are, respectively, the electronic Hamiltonian of the target
molecule, the kinetic energy of the projectile electron, and the interaction be-
tween the electron and the molecule. When the electron is far away from the target
(that is, VeT -+0), the initial wave function of the system is

ik, .r

_ i el _ ,asy

¥ = A(ki)e wt Xvi = w‘i v,

where w$1 is the electronic wave function of the target and A(ki) is the amplitude

of the plane wave representing the noninteracting projectile electron. Similarly,
the final wave function after vibrational excitation is
ikper
f el
v = Alkc)e Yy X, =¥
f f tvf €, Ve
The target electronic wave function satisfies

T el
[He7 - VO(R)]wt =0 . (7.1.17b)
Conservation of energy implies

v 2

_ 3
E= Evi * o T Evf * 7m

The total c}oss section for vibrational excitation is [7.25]

_ f C 2
Cvi "Vf-r""rdkfIT'l -ofl N

where the transition matrix element is

v= T8+ 700

*
Tiag "B R [daveVory = Tite + Tisg

i
with
m 1
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Recall that A(k) is (1/8’13)1/2 and (mk/8n3 2)1/2 for momentum-normalized and energy-
normalized continuum functions, respectively. The resonant and the nonresonant part
of the matrix element are, using (7.1.7),

res
TIS =B [ dR [ dq vV et

e =® [ R [ dq \“f"eT( [ de f Mv)

In the following discussion, it will be assumed that there is no interference be-
tween the resonant and the nonresonant scattering amplitudes and only the resonant
part of the excitation cross section will be considered. Now, using (7.1.2¢,17b,6),
res _ *
Tif = B[ dR [ dq ¥ilHgy

T
He1 Teloac

- * yk
=®B [ dR xva (cf,R)E

The direction of the outgoing electron appears only in the coupling matrix element
via the plane wave exp(ikf-r). If the Lth partial wave in the expansion of this plane
wave is the lowest term providing a nonzern contribution to the coupling matrix
element and if one makes the approximation of retaining only this leading term, then
the matrix element can be written as

ViegsR) = VeR)Y (k)

- - 172
where V¢ =[f dkfIV af, | ] is independent of the final direction of the electron.
Then if J is *he final rotational state of the molecule,

o

res _ x %
T1 . J?Y (k ) é xvaVfQJ(R)

The function gJ(R) can be expressed in terms of an integral over the Green's func-
tion G(R,R') corresponding to the operator on the left-hand side of (7.1.14)

£4(R) =

o~—.8

B(R,R" )V, (R')Y (k:)x, 5(R')dR’
1

The resonant contribution to the cross section for vibrational excitation now be-
comes
res _ Xf _2 v V12T ar TR X " Y o 12
oiaf = B (k) IT| T dR [R5 (RIVERIG(RLR' IV, (R )y, 5(R')
i 0 0 f

This expression for the VE cross section should be averaged over the direction ﬁ
of the molecular axis with respect to the fixed direction of the incident electron
beam. Equivalently, one may average over ki while holding R fixed. The final ex-
oression for the VE cross section is
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res _ ke ( m )2 1 1

oTes o
ief © X G, Az(ki)Az(kf) .53

T T o * e 2
é dR é dR xvaVfG(R,R )V‘XViJ ) (7.1.18)

x

7.1.5 Semiclassical Approximation

Tre cross sections for both dissociative attachment and vibrational excitation in-
volve the continuum jon-atom wave function EJ(R) which is most easily obtained by
numerically solving {7.1.14). However, the physical nature of the processes in-
volved, within the resonance model, becomes most evident if the semiclassical ap-

proximation is used for gJ(R) [7.26). The WKB approximation to EJ(R) contains a
factor

exp[-Im{zs (f% (€ - V(R) - 8(Rpe) + % ir(R,ci)]>1/zdR}] ,

where z is the complex classical capture radius:
- 1.
e; =V (z) + A(Z,ci) - 7»1r(z,gi) - Vo(z)

For a narrow resonance (smell T), this factor (on neglecting 4) reduces to
R -
1 %s T(R) dR 2(E ~ V(R
EXD("Z;{ _é_)m)_) s v(R) = J_M 1 ,
c

so that for the case of a narrow resonance, the attachment cross section can be
written as the product

opa = ccaps . (7.1.19)
The first factor is interpreted as the cross section for the formation of the
resonant state by electron capture. The second factor

R
S=exp<— és T!R) vdR ) ,
C

the so-called classical survival factor, is the probability that the nuclei in the
resonant state separate from RC to Rs without autodetachment, that is, the probabi-
1ity that the resonant state survives long enough to assure the occurrence of disso-
ciative attachment.

The Green’s function appearing in the vibrational excitation cross section can
be written as G{R,R') =U1(R<)U2(R>)/N, where U, and U, are the solutions of homo-
geneous part of (7.1.14) and W is the corresponding Wronskian. The cross section
for vibrational excitation can now be written as [7.27)
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o res _ . " 27 2 o
o ¢ = "constant |Ii[ Ilfl R (7.1.20) |
]

where all the normalization constants and the kinematical factors have been ab- o

’
. sorbed in the "constant" and Ii and If are the integrals )

. R .

S v* 4

i Ii = é UI(R)vi(R)XviJ(R)dR , 4

¥

L 3

I, = U, (R)VZ(R)x, (R)dR . 0

f 0 2 f va i

These can be easily evaluated by using the WKB approximations for Ul and U2' The o)

first factor 11112 in the VE cross section is the probability of the formation of :

h

the molecular resonant state when the neutral molecule is initially in the ith ':

vibrational level. This factor is proportional to %cap- The second factor IIfIZ is J&

the probability that the resonant state autodetaches leaving behind the neutral V]

molecule in the fth vibrational level. .f

'

(

Y

\

7.2 Applications to Specific Molecules ¢

W

In the following discussion, vibrational excitation and dissociative electron attach- Ll

ment to some specific homonuclear as well as heteronuclear diatomic molecules will 3

be reviewed. The threshold energy for the electron attachment process, e +AB +A +B~ %

depends on the dissociation energy (DOO) of AB and on the electron affinity (EA) of \2

B: Eth =D00 -EA. At higher incident electron energies, the negative ions can also )

be produced by the process of polar dissociation (PD). In this process also, the
molecule AB dissociates under the impact of the incident electron. However, both the o

dissociating fragments are charged rather than neutral, that is, e +AB we +A* 487, s'
The threshold energy for this process obviously depends on the ionization potential :
. ¢PD _ . . DA PD ¢
(IP) of A: Eth —D00 -EA +IP. Table 7.1 provides the details of Eth and Eth for some A
simple diatomic polecules [7.28-30].
The shape of the electron attachment cross section as a function of the electron g%
- Y,
impact energy depends on the nature of the potential curve V (R) of the resonant 3*
molecular anion. If the anion curve is attractive in nature, the attachment cross iy
section shows a vertical onset with a peak at the threshold [7.17,31]. If the anion ::
curve is repulsive, the attachment cross section, above the threshold, increases v
gradually to a peak. In the case of a heteronuclear molecule AB there are two thres- 'w
holds for attachment corresponding to the possibility of either A~ or B™ formation. 5
Table 7.2 shows the peak cross sections, just above the threshold, for attachment '
LY
to various molecules at room temperature [7.32-35]. "
- ]
(
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Table 7.1. Threshold energies and relevant quantities for dissociative electron 2
attachment and polar dissociation of various diatomic molecules “
Atom EA [ev]® 1P feviP ¢
H 0.7542 13.60
N <0 (-0.07) 14.53 .
. Q1 3.615 12.97 .
C 1.268 11.26 i
0 1.462 13.62 3

P
Molecule Do fevl© EEﬁ [eV] (products) Etg [eV] (products)

H, 4.478 3.728 (K + H") 17.32 (WY + HY)
N, 9.759 9.759 (N + N + e) 26.29 (N* + N + e)
co 11.09 9.628 (C + 07) 20.89 (C* +07) ;
co 11.09 9.822 (C” + 0) 23.44 (C + 0+) g
HC1 4.433 0.818 (H + C17) 14.42 (K + C17) o
HCY 4.433 3,679 (H™ + C1) 16.65 (H + c1+)
J
]
217.28]; °17.29]; ©17.30) )
{
Table 7.2. The peak cross sections for dissociative electron attachment to various :
diatomic molecules ¥
i Molecule Negative ion formed Peak attachment cross Ref.
 section [cm?]
Hp H_ 1.8 (-21)° [7.32] :
N N_ (autodetaching) 2.5 (-18) [7.33)]
CG 0_ 2.0 (-19) [7.34)]
co C _ 7.0 (-23) [7.34) !
HC1 a 2.68 (-17) [7.35] .
HC1 H 2.08 (-18) [7.35]
— I — (4
31,8 (-21) = 1.8 x107% j
[}
§
7.2.1 Molecular Hydrogen ly
¢ a) Resonances -
. Atomic hydrogen has a stable anion K with configuration 152. The lowest g and u 1
states of the hydrogen molecular anion, namely the zxg and 22: states that disso- 1
ciate into H(ls) +H'(152), are true bound states for asymptotically large inter- P,
. nuclear separations R. However, for small values of R, the states (109)2(1ou) ZI:
and (log)(lou)2 223 are the lowest resonant states of Hé. Calculations of the X
resonant states show [7.36,37] that Zz: is a shape resonance, with the X 1z+ state j
: of H2 as its parent, for internuclear separations R53.0 a.u. and that it turns into
z a bound state for larger values of R. This resonance is mainly responsible for the
¥ sharp threshold peaks in the dissociative attachment cross sections. The zz; state 5
’ of HE, on the other hand, is [7.37]) a shape resonance for R<5.1 a.u. with the q
; :
g 204 .
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(lcg)(lcu) 3z: state of H2 as its parent; it is an electron-excited Feshbach re-
sonance in the approximate range 5.1 a.u. SR £5.3 a.u. of internuclear separations
lying just below the repulsive (lcg)(lcu) 3z: state of H2 and it is a bound state
for larger values of R. This resonance contributes strongly to the attachment cross
sections and to excitation of higher vibrational levels of the ground electronic
state 12; of H2 in the energy range 6-13 eV {7.38].

In the energy range 11-14 eV, information about the resonant states of Hé has been
obtained [7.39] by investigating the energy-loss spectrum for the scattering of elec-
trons by H2 and 02. The differential cross section plotted as a function of the
incident electron energy for various fixed energy losses {corresponding to the exci-
tation energy of various vibrational levels of the ground electronic state of the
neutral molecule) in both H2 and 02 provided two series of peaks. These series have
energy spacings of 0.3 eV and ~0.15 eV and have been designated series a and series
b, respectively. The peaks of series b appear only in the high vibrational exit
channels. The energy dependence of the differential cross sections for D2 at smaller
scattering angles ($70°) exhibited a further series of peaks which was labeled series
c. The energy spacing of peaks in series ¢ is very similar to that in series a. These
three series of peaks were attributed to the vibrational levels of the excited re-
sonant states of H;. In fact, by studying rovibrational excitation of the ground
electronic state of HE occurring via these resonant states, it was possible to es-
tablish the symmetry of the resonances [7.40]. It was tentatively concluded that
the series a, b, and ¢ belonged to the 1o 128 234 . 12 Zr;, and 1oy 1r, 20
znu electronic states of Hé. It was later argued [7.41] that the series ¢ could be-
long to a resonance with the configuration l:o lrs (same configuration as for series
a) and 5ynmetry,2Ag. The fact that both the series a and c¢ have similar vibrational
energy spacing was taken as supporting evidence for the corresponding resonances
having the same electronic configuration. Calculations of the potential curves of
the resonant states of Hé in the energy range 11-14 eV indicates {7.37] that series

a starting at 11.32 eV with a spacing of 0.2 eV could originate from the resonant

state A 2:+ with a mixture of configurations lcg ZrS and lrg lrS. Series ¢, pos-

sibly starting at 11.19 eV with the same vibrational energy spacing of 0.3 eV,
might belong either to the lng 2cg lnu ZTU resonant state or tc the 1- 1~5 ?:
zxu) is favored by calculations of the

g
resonant state. The first designation (

resonant potential curves since the minimum of the €. curve appesars to be too

high in energy (- 11.5 eV) to account for the 11.19 eV starting point of the series.

The second designation (2L }» however, is deemed likely as 2 result of the more

recent experiments [7.42] in which dissociative attachment occurring via higher

vibrational levels of the 219 resonant state is apparently observed and it is sug-

gested that the minimu? of the 2:9 curve might lie Tower in energy than calculated.
.+

The existence of a resonance leading to the b series has also been experi-

mentally confirmed [7.43]. However, not much further infcrmatior seems to be avail-
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able for series b. In fact, even the configuration of the electronic resocnant state
22+ responsible for the b series does not appear to be firmly established.

A correlation diagram for various resonant states of Hé in the energy range
11-14 eV has been proposed {7.42,43). The dominant configuration of the A 2:*
resonance, which presumably is responsible for the a series, is 1= 2;2 and it
dissociates into H(ls) +H'(252). The states ]cg 2rg lvu znu and 1c 1~u 2: , which
are possibly responsible for the c series, dissociate into H(1s) +H (2s2p) and
H(1ls) +H'(2p2), respectively.

Finally, the real part of the potential curves of some of the resonant states
of HE [7.37] along with the potential curve for the ground electronic state of
H2 [7.44]) are shown in Fig.7.2. The energy difference between the potential curves
of the ground state of the neutral molecuie and a particular resonant state, in the
Franck-Condon region, is sometimes referred to as the energy of the resonance. As
an example, the energy of the X ZE: and the B Zz; resonances of Hé are approxima-

tely 3.7 eV and 10.5 eV, respectively. The energetics of the potential curves imply.
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for example, that at an incident electron energy of ~9-11 eV the major contribution
to the cross sections for the dissociative electron attachment as well as the vib-
rational excitation comes from the B zrg resonance.

N Rt e e
b} Vibrational Excoltation

A somewhat superficial but easily understood approach is to think of the cross sec-
tion for the vibrational excitation of a mclecule as made up of two parts —a re-
sonant part and a nonresonant (also potential or direct) part. A complete calcula-
tion of the vibrational excitation cross secticon should take into account both the
resonant and the nonresonant contributions. The nonresonant part of the cross sec-
tion is usually a smoothly varying function of the projectile energy. For any mole-
cule it is possible to obtain the resonant contribution to the excitation cross
section by using a resonance model in which an intermediate molecular anion resonant
state is formed. For this purpose, one needs to know the complex potential energy
curve of the resonant state. This can be obtained either by a separate ab initio
calculation or by a semiempirical fit of some selected experimental data to the
potential parameters. Close to the resonance energy, the resonant contribution to
the excitation cross section can overwhelm, sometimes by orders of magnitude, the
nonresonant part, while away from the resonance energy the resonant contribution is
only a small fraction of the total excitation cross section. The overall excitation
rate is then usually dominated by the resonant contribution. Alternatively, one
could use various parts, static, exchange, polarization, etc., of the electron -
molecule interaction to calculate low energy phase shifts and to obtain the rele-
vant transition matrix elements either directly or by summing over various partial
waves to calculate the excitation cross sections. If all the important parts of

the interaction are taken into account properly, a resonance can reveal itself by
making the phase shift of one of the partial waves, the one which leads the rescnance
formation, much larger than the other phase shifts [7.45].

The resonance contribution usually appears in the form of a bumplike Structure
in the excitation cross sections. If the resonance is short-lived (impulse limit),
then during.the lifetime of the resonance there is hardly any possibility of a nuc-
lear wave packet refiecting at the turning points and the structure in the excita-
tion cross sections is just a smooth broad bump. On the other hand, in the case cf
a2 long-lived resonance {compound limit) with an attractive curve, there is signifi-
cant interference between the incident and reflected nuclear wave packets, which
appears in the excitation cross sections [7.10] as a bump with substructure, cor-
responding to the vibrational levels of the resonance state.

Figure 7.3 shows the energy~loss spectrum of H2 taken at 140" with 10.5 eV elec-
trons [7.46]. The elastic peak at zero energy loss is normalized to 1. The energy
separation between the peaks corresponds to the vibrational spacing of H,. The ratio
cf the peak intensities gives the relative magnitude of the vibrational excitation
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Fig.7.3. Energy-loss spectrum of Hp at
10.5 eV and 140°. The elastic peak at
zero energy loss is normalized to 1
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cross sections for the incident electron energy of 10.5 eV. The important point ig

that at this incident energy, the vibrational excitation cross sectiaons “a relative

to the elastic cross section %00 decrease with increasing v by almgst an order of
magnitude for small v (v =1,2,3) but become aimost constant for large v (v =§&,9,1C,.
This is a clear indication that the rescnance responsible for the excitation of
lower vibrational levels is different from the resonance responsible for excitetion
of the higher vibrational levels. This fact is also evident from Fig.7.4 where the

individual contributions [7.38] of the Towest two (namely, ‘:: and Zzg) resonances

of Hé to the vibrational excitation cross sections are shown, aiong with the er-
perimental results [7.47,48]. Note that for incident electron energy ~10 eV, 61
and 9y 3re essentially dominated by the 2:: resoriance while a tendency exists for
the Zg resonance to dominate the excitation of higher vibrational levels. The ab
initio calculations [7.49) of the vibrational-excitation cress sections at low im-
pact energies (< 10 eV) also agree with the experiments.

The excitation of higher vibrational levels can also be achieved very efficiently
by a nonresonant process in which higher electronic states of the H2 molecule are
populated first by electron impact. The higher singlet electronic states will ever-
tually decay radiatively leading to the repopulation of the vibrational levels of

the X 1:; state of HZ' Above the threshold (~20 eV) the cross sections for vibra-

tional excitation (vf;>3) of H2 via electron collisional excitation of the higher

singlet states can be orders of magnitude larger than the resonant cross sections
shown in Fig.7.4 {7.50].
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Fig.7.4. Contributions of the

T ' ' L ! two lowest resonant states to
the vibrational excitation
cross sections,of Hp (---):

z:; (== ): “Ige %——) are
the experimental results of
Ehrharct et al. {7.47] and the
circles are the observations
for o 1 of Lirder and Sekridt
(7.48%
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e) Dissoziative Attachment
The production of H™ jons by electron impact on H2 is caused either by the process
of dissociative attachment,
e + H2 - H+H
or by polar dissociation

e+ H, - W+ 0+ e

Below an electron impact energy of 17.2 eV, polar dissociation of H2 is energetically
not possible and negative ions are produced only by dissociative attachment. A glo-
bal view of the H production from H2 in the lowest vibrational level of its ground

. electronic state is shown 1[7.51) in Fig.7.5. The structures around 3.5-4 eV and
v 8-12 eV are dominated by the Zz: and the 2:; resonances of Hé, respectively. The

sharp peak around 14.2 eV is caused by the higher resonances [7.52) which resuit
in dissociation into H* +H . In fact, substructures corresponding to the vibrational
levels of the higher resonant states have been observed [7.42,53] on the high-ener-
gy side of both the 10 eV and the 14 eV peaks.
Recent observations [7.54] of H™ production from HZ’ in the energy range 1-5 eV,
. have revealed a dramatic increase in the attachment cross sections if the attaching
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. M Fig.7.5. A qlobal view of H™
production from Hy by elec-
tron impact. From [7.51]

H'/H, with permission
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H2 molecule is rovibrationally excited. For example, an increase of four orders of
magnitude in the cross section is observed if H2 is excited from v =0 to v =4 and
a fivefold increase for J =0 to J =7 excitation. These experimental observations
can be completely accounted for within the resonance model by using semiempirical
fits to the relevant potential curves of H2 and HE. These theoretical results [7.21,
38] are compared with experimental observations in Fig.7.6. The enhancement of
the cross sections essentially arises from the zz: resonance of Hé which is a short- ¢
Tived resonance with an average width of about 8 eV. Fiqure 7.7 shows [7.55] the d
individual contributions of both the 2:: and the 2:; resonances of Hé to the disso- )
ciative attachment cross sections. The ¢zt resonancé, which dominates the attach-
ment around 10 eV, does not exhibit a dramatic enhancement on vibrationally excit-
ing the molecule. The 222 contribution shows peaks which arise from the oscilla-
tions in the vibrationa]dwave functions of H2. This structure., which is appgrfntly
related to the Condon diffraction bands [7.56], clearly indicates that the =
resonance has a longer lifetime (and hence a smaller average width} than the VZS: Z
resonance. This fact is indeed supported by the calculations [7.57]. '
The attachment rate at low electron temperatures is also essentially determined Y
by the contribution of the 21: resonance. The attachment rate is c¢f course drama-
tically increased if the attaching molecule has internal energy {in the form of ro- ¢
vibrational excitation) built into it. At low internal energies, vibrational exci- 1
tation is more effective in enhancing the attachment cross sections and rates than
the rotational excitation, however, at high internal energies, the enhancement is
basically determined by the total internal energy and not by its exact partitioning 3
between the vibrational and rotational modes [7.58]). This strong enhancement of the )
attachment process on increasing the internal energy of the molecule is attributed
to an increase in the range of internuclear separations over which the electron

VB e - -
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Fig.7.6. Internal energy dependence of the threshold cross sections for electron
attachment to Hp and Dy via the lowest resonance. (occ): experiment [7.54];
(ooo,s & &t theoretical results from [7.21 and 38], respectively. From [7.38]
with permission

Fig.7.7. Contributions of the two lowest resonant states to the dissociative elec-
tron attgchment cross_sections for various rotationless vibrational levels of Hp.
( ): 25; (~=--): :3. From [7.55] with permission

capture can occur. This increase occurs because of the larger amplitude of vibra-
tion for vibrational excitation and because of the centrifugal stretching of the
molecule for rotational excitation.

The ground electronic state of H2 supports at least 294 rovibrational levels.
An investigation [7.59] of the contribution of the 233 resonance to attachment to
all these levels of H2 revealed that the maximum possjg1e3r?§e of electron attach-
ment to the ground electronic state of H2 is about 10 “cm”s ° and, furthermore,
that the average energy carried by the H ions is almost always less than 0.5 eV.

From Fig.7.2 one notes that the real part of the potential curve of the Zr:

2.+

state of H; is slightly attractive, while that of the :g state is always repulsive.

It has been argued [7.17,31] that, in general, an attractive resonance curve will
result in a vertical onset of the attachment cross section at threshold while a re-
pulsive resonance curve will give a gradual buildup of the cress section at the
threshold. This behavior at the threshold in attachment cross sections is clearly

noticeable in Fig.7.7 in the cases of the 2:: and the Zf; responances of H2.
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Anomalously large densities of H ions observed [7.60) in a hydrogen plasma can
be attributed to the production of these ions by dissociative electron attachment
to either the ground electronic state or possibly to the excited electronic states
of H2 {7.61].

d) Isotope Effect

One can study the isotope effect for dissociative attachment and vibrational exci-
tation by replacing either one or both of the nuclei by their isotopes. The effect
is most striking for lighter molecules like hydrogen because of the greater change
in the reduced mass on isotope substitution. It is observed [7.32,52] that the
cross section for the production of H™ from H2 exceeds that of D° from 02 by several
orders of magnitude. However, ignoring ‘the magnitude, the qualitative behavior of
D™ production from 02 is essentially similar to H from Hy. Table 7.3 provides

cross sections, near threshold, for attachment to H, and D2 in various rovibrationa)
levels. This isotope effect in regard to the dissociative attachment can be under-
stood [7.62] within the resonance model by noting, from the semiclassical expression
(7.19) for the attachment cross section, that the classical survival factor

R
C

js a strongly mass dependent quantity. In fact, S can be approximated by exp(-7-/h)
where 7, the time taken for the separation of the nuclei to increase from the cap-
ture radius R_ to the stabilization radius Rs (see Fig.7.1). is inversely propor-
tional to MI/Z, due to simple kinematical considerations. Thus nuclei of DZ’ taking
longer than nuclei of H2 to separate out to RS, experience a stronger competition
from autodetachment which, in turn, reduces the probability of dissociative attach-
ment.

It has been theoretically predicted [7.63] that the contribution of a short-lived
(that is, impuﬁse Timit) resunance to the vibrational-excitation cross sections c

- Ov
behaves as M v/e

. At low impact energies (< 5 eV) the dominant contribution to the
excitation of the low vibrational levels of H2 and D2 comes from the ZT: resonance
which is a broad, short-lived resonance. Both the experimental observations [7.54]
n‘V/z .

and the theoretical calculations [7.38] indeed show oy (DZ) Y4 “ov (HZ) for
v=1,2,3.

7.2.2 Molecular Nitrogen

m

a)

el ranirel

It is rather curious that even though N2 could be safely considered, in electron-

molecule collisions, as the most investigated molecule, the complex potential ener-

gy curves of the first few resonant states of N2 have not yet been established over
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- Table 7.3. Dissociative electron attachment cross sections near threshold for various
° rovibrational levels of H, and D,
v J Ha %, ) I
E [eV] A [cm ] E [eV) A [em®]
0 0 3.73 1.6(-21)a 3.83 3.0(-28)
0 1 3.73 1.7(-21) 3.80 3.3(-24)
0 2 3.70 1.9(-21) 3.80 3.4(-24)
0 3 3.65 2.3(-21) 3.78 3.9(-24)
0 4 3.60 2.8(~21) 3.75 4.5(-24)
0 5 3.53 3.7(~21) 3.70 5.7(-28)
A 0 6 3.45 5.0(~21) 3.68 6.8(-24)
0 7 3.35 7.2(~21) 3.63 8.8(-24)
0 8 3.25 1.1(~-20) 3.58 1.2(-23)
! 0 10 3.13 2.2(-20) 3.43 2.2(-23)
0 15 2.38 3.2(-19) 3.03 2.0(-22)
0 20 1.63 5.5(-18) 2.55 2.5(-21)
1 0 3.23 5.5(-20) 3.45 1.5(-22)
2 0 2.73 8.0(-19) 3.08 3.3(-21)
3 0 2.28 6.3(-18) 2.75 4.2(-20)
4 0 1.85 3.2(-17) 2.43 3.6(-19) :
5 0 1.45 1.1(-16) 2.10 2.2(-18)
6 0 1.08 3.0(-16) 1.80 1.0(-17)
7 0 0.73 4.5(-16) 1.53 3.3(-17)
8 0 0.40 3.5(-16) 1.25 9.6(-17) 3
9 0 0.13 4.8(-16) 1.00 2.3(-16) A
10 0 0.75 4.1(-16)
11 0 0.53 3.8(-16)
12 0 0.30 3.7(-16)
13 0 0.10 4.6(-16) ‘
-21 y

31.6(-21) =1.6 10

the complete range of internuclear separations R. In fact, the lowest resonance of
N;, namely, the Zﬂg resonance at about 2.7 eV, has been traditionally used [7.16.25,
64-661 for testing many new ideas. The electron affinity of atomic nitrogen is
slightly negative (-0.07 eV) indicating that N 1is an unstable anion capable of

autodetaching the electron. The ground and the first excited electronic states of y
N2, dissociating into N (45) + N (45), have configurations
15168 2ck 2l 1l sl il and \
2 2 3 2 3.4 ]
1c7 1s 2 r 3¢ 1= AL
g ‘g g g '

The two lowest resonant ctates of Né, dissociating inte N(AS) +N-(3P), are then

obtained by adding an extra electron in the valence orbital g that is,

{
2,2,2,2 2 2 \
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The configuration and structure of these two resonant states of N; are quite simi-

N lar to the Xeﬂ and BZR states of the isoelectronic molecule NO [7.67].
Quite a few calculations have been made [7.16,66,68] just to establish the elec-
- tronic resonance parameters of the 2[ state. These calculations, by their very na-

ture, provide reasonable values of the complex potential curve oniy in the vicinity
of the equilibrium internuclear separations. The only calculation {7.€9] of the ab-

solute values of the potential curves of Né, available over an extended range of

internuclear separations R, is not able to correctly fix the N2 curves relative to

the xz* 2. “and the A

statei are shogn over a large range of R and compared with the ab initic curves of
-+

the X"z and A 2: states of NZ' The Né curves in Fig.7.8 are positioned so that the

potential minimum of the Zﬂ curve matches that of the more elaborate ab initio

curve of NZ‘ In Fig.7.8 these resonant curves for the X

calculation [7.66] done only in the vicinity of the equilibrium internuclear separ-

ation. The ing and the X't* curves shown in the figure cross at 1.4& A which 1is

larger than the internuclear separation at which the ab initic curves are seen to

N(*s)eN-(*P)983 ev
__

. p —

N(*S)+N(%),976 eV

E eV
L]

Fig.7.8. Potential curves
of the lowest twc elec-
- troric states of N (0 -}

Lo Lt LA, t and N2 (----;
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cross. Interestingly, however, the curves in Fig.7.8 indicate that the AZ'h stete
of Né turns into a true bound state for 1.8 ASRS2.5 A, ltzhas alsc been argued
independently [7.70] that this bound state behavior of the ru state erists over
a larger range of internuclear separations than the one shown in Fig.7.B.

b} Vibrational Excitatio:

In the case of nitrogen, the tifetime of the lowest resonance, 2: , 15 comparable
to the vibrational period of the nuclei in Né. This is an exarple of the boomerang
1imit of the resonance mcdel. The strong interference between the initial and the
single reflected nuclear wave packets results in spectacular peats in the energy
dependence of the vibrational excitation cross sections [7.10.71) at low impact
energies (< 4 eV). The positions of these peaks shift to higher energies for exci-
tation to higher vibrational levels. More than forty clearly resolvable peaks in the
cross sections are observed for excitation from v =0 to v=1-7 levels. A gloval
view [7.10] of the vibrational-excitation cross sections of N2 in the ernergy range
1 to 30 eV reveais at least three broad maxima at electron impact energies larger
than 7 eV. The broadest and the largest of these maxima extends from roughly 15 eV
to 30 eV.

A number of calculations have been carried out to explain the positions and the
shifts of the peaks at low energies in the experimental vibrationel excitation
cross sections. These include an ab initio close~coupiing hybrid calculation [7.647,
a calcutation using the R-matrix formulation [7.65]. and calculations using the
resonance model with both ab initic [7.66] and semiempirically fitted parameters
[7.25) for the complex resonance potential curves. Various calculations difser in
computational complexity, however, all calculations are able to reproduce at least
qualitatively, and in some cases even quantitetively., the experimentally cbeerved
peaks in the excitation cross sections.

The essential difference [7.72]) petweer the ab initic hybrid theory apprcach
and the resonance model approach lies in the choice of the basis functiont used for
representing the electron-mclecule system (with N +1 electrons). In the hybrid
theory, the system wave function is expanded, in a close-coupling manner, in terms
of the complete set of v.brational states of the N-electron target mulecuie. In
the boomerang model, on the other hand, the system wave function is written irn terms
of the electronic-nuclear wave functions of the (N +1)-electron resonant state. 1€
carried to completeness, either procedure would provide the same, and presumably
the exact, result. However, computer lTimitations necessitate the truncation of the
basis set which forces a finite number of N-electron functions, in the hybric
theory, to mimic the behavior of the (N +1)-electron system. for this reaccn, even
though the hybrid thecory takes the complete physics of the process intc - ount,
the rate of convergence in the calculations using this theory is quite slow [7.64].
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Therefcre, in processes like the vibrational excitation of NZ around 2-3 eV, where
a resonance formation is evident, the resonance model approach will clearly give
more rapidly converging results.

As mentioned earlier, an important feature of the boomerang limit of the re-
sonance model is that the resonance width is a decreasing function of the inter-

= e

nuclear separation R [7.16]). After resonance formation, the nuclei separate out

until a reflection occurs at the outer turning point. Now as the nuclei come closer
together, the resonance width increases and the resonance lifetime decreases with

- e B

the net result that the resonance effectively "dies out" leadino to the autodetach-
went of the electron or the vibrational excitation of the molecule. Thus it is the
interference between the single incident and a single reflected nuclear wave in the

resonant state that leads to the shifting peaks in the vibrational-excitation cross
sections.

O

.

In two separate endeavors [7.25,66] the resonance model has been used to calcu-
late the cross sections for the vibrational excitation of N2 at low energies. In
) one case, the resonance parameters —the electronic potential curve of the molecular
anion and its resonance width —are obtained from an ab initio calculation. In the

;i other case, a semiempirical approach is used in which about half-a-dozern parameters
'y are adjusted to obtain agreement with a selected subset of the experimental data.
= Either calculation is able to reproduce almost all of the peaks in the excitation
N cross sections, Figure 7.9 shows a comparison of the experimentally observed ex-
K
: citation cross sections [7.71] with those obtained by the semiempirical resonance
i model approach [7.25). It is interesting that even though the ab initic rescnance
K parameters differ substantially from the semiempirical ones. both sets of parameters
]

provide similar results for the vibrational-excitation cross sections. This ciearly
N suggests [7.73] that there may not be a unique set of resonance parameters which
L lead to the correct cross sections.
R
‘: o
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- § - Fig.7.9. Relative cross
Iy c i~ sections for vibraticnal
g 2 excitation of N7. [....):
K = experiment 17,7131 [ -—-—3:
’ X —— — T N theoretical results [7.25].
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The peak in the vibrational excitation cross sections in the energy range 15 to
30 eV is quite broad; its full width at half maximum is larger than 5 eV. It is pro-

posed [7.74]) that this broad peak arises from a shape resonance which corresponds
to the trapping of the incident electron in the 3cu molecular crbital.

¢) "ssociative Attaciment”

The ground state of the atomic anion N-(BP) is an autodetaching state. Thus the
traditional process of dissociative attachment which would normally lead to a stable
atomic negative ion is not possible for Nz. However, an analogous process, via the

formation of an intermediate molecular resonant state, is possible for N, which re-

Z
sults in the dissoc.ation of the molecule plus a free electron with kinetic energy
equal to the magnitude of the atomic electron affinity [~0.07 eV). This process is
appropriately termed [7.33] "resonant disscciation by electron impact”. Schematically

e + N, = No(resonance) » N(*s) + N"(°P)  and

N3Py - NSy + e

That the dissociation is indeed occurring via the formation of N-(3P) has been
confirmed [7.75] by studying the energy distribution of the emitted electrons. This
energy distribution is observed to be independent of the incident electron energy
and is essentially determined by the energy and the lifetime (or the width) of the
N'(3P) resonant state. The measured current of the ejected electrons indeed peaks
at the residual electron energy of 0.07 eV. Also, the molecular resonance respon-
sible for N'(%) formation is argued [7.75] to be the 2o state of K.

Both the differential and the integral (or tctal) cross section for "dissocia-
tive attachment" to N2 have been measured [7.33,70] and are seen tc be compatible
with the calculations [7.70]) of the same using the local resonance model. Figure
7.10 shows the total cross section for production of N atoms from the reactior
e +N2 N +N+e (0.07 eV) as a function of incident electron energy. The resonence
model calculations can, of course, be extended to determine whether the attachment
cross section is dependent on the initial rovibrational state of the neutral mole-
cule. Unlike hydrogen, the effect of temperature on the cross section for attach-
ment to N2 is not very dramatic. An increase by at most & factor of four of the
attachment cross section is predicted [7.76] if the molecule ic vibrationally ex-
cited from v =0 to v =4. An estimate of the dissociation rate suagests [7.33] that

the resonant dissociation mechanism could be an important source of superthermal
N atoms from NZ’
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7.2.3 Carbon Monoxide
I
a) Resconarces ¥
- '6
Some information about the resonances of CO could certainly be gleaned from the :
resonances of the isoelectronic system Né. However, unlike NZ’ it is possible, in f)
the case of CO, to obtain two stable negative ions, C~ and 0 . The lowest-energy o
state of CO, dissociating into C(3P) +O(3P), has the confiquration
2 2 2, * 4 ¥
(c15)2(d15)° (c25)° (" 25)2(22p)* (52p)° 3
t
which in the united-atom limit can be expressed as b
i
2 4 2 1.+ \
(150)%(250)2(2p2)2(2p7) ¥ (35012 (3pe )2 1t '
[The standard notation {7.77] of an asterisk is used to indicate an antibonding "_
orbital.] The next vacant orbital is the antibonding ~*2p orbital and the lowest ‘
resonance of CO~ is thus obtained by placing the extra electron in this orbital. N
This results in the Zﬂ shape resonance of €O~ which is analogous to the ng reson- et
ance of Né. The electron affinity of atomic oxygen is larger than the affinity of h
atomic carbon [7.28) and therefore the lowest resonance of CO™, namely 2.’, disso- A
ciates into C(3P) +O'{2P)‘ It might also be instructive to compare the resonant ;
states of CO with another isoelectronic system, the hetercnuciear diatomic mele- 'Q
cule NO {7.67]. The Xir: ground state of NGO has the same configuration as the ‘;
Towest 231 resonance of CO~ mentioned above. The lowest excited 2: state cf NO, the X
B state at 5.7 eV, is bound in the Franck-Condon region. This state of NC has the )
dominant configuration ... (n?p)3(r2p)2(v*2p)2. The analogous excited 2. resonance .s
¢
of CO™ is also expected to be attractive in the Franck-Condon recion and i< propesed :
17.78] to be responsible for the vertical onset of the O -production curve at the \
threshold.
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The resonance most probably responsible for C'(QS) 40(3P) production is the Y
22* Feshbach resonance with the dominant configuration :
(015)2(c*15)2(025)%(0*25) 2 (n2p)* (02p) (c35)¢ 5 '
This resonance was first observed [7.79] at 10.02 eV during investigations of the
energy dependence of the differential cross sections for scattering of low-energy .
electrons (9.5-11.5 eV) by CO. The width of this resonance is expected tv be small, :
due to its closed-channel nature. In fact, ab initio calculations [7.80] give a X
width of 71 meV compared with the experimental value [7.79]) of 45 meV. An analogous ;
Feshtach 22+ resonance of Ng, with a similar configuration, is observed [7.81] at
11.48 ev. A
g
b} Vibrational Excitation f
Experimental observations [7.47) of the energy dependence of low-energy cross sec- é
tions for the vibrational excitation of CO reveal characteristics which are very
similar to those shown by the cross sections for Ny The vibrational-excitation E
cross sections show peaks which shift toward higher energies with increasing fina) [
vibrational quantum number. These characteristics are once again understcod in f
terms of the boomerang limit of the lowest resonance of CC, namely, the 2r shape k
resonance. As shown in Fig.7.11, the semiempirical calculations [7.82,E3] using :
the local width resonance model are able to explain the experimental cbservations 3
{7.47] in a satisfactory manner. The average width of the 2: resonance, as obtained 1
by this semiempirical fit, is indeed comparable to the vibrational period of the
resonant state as expected for the boomerang limit. Even the semiclassical calcu- :
lations [7.84] of the vibrational excitation cross sections using semiempirically
derived resonance parameters are in fairly good agreement with the experimental v
observations. )
The energy position of the Zﬁ resonance of CO, which is essentially responsible :
for the oscillatory structure in the vibrational excitation cross sections at low :
energies (~1-4 eV), is 1.8 eV {7.47,85). Figure 7.11 shows that, for electron im-
pact energieé either Tess than 1 eV or larger than 3.5 eV, the resonant countribu- %
tion to the excitation is negligible and the excitation in these energy ranges is 4
completely via nonresonant processes. In fact, on comparing the cross section 01 f
for electron impact energies less than 1 eV for isoelectronic molecules CO and N2 :f
{(from Figs.7.11 and 9, respectively), it is observed that the nonrescnant contri- 2
bution to the excitation persists below 1 eV for 0 while for N2 there is almost
no background nonresonant contribution. This is understood {7.47] by the fact that, ny
unlike NZ’ carbon monoxide has a permanent dipcle moment which is responsible for y
a considerable nonresonant contribution. :
The angular dependences of the excitation cross sections at low energies [«5 eV} E
for isoelectronic molecules CO and N2 are observed [7.47,86] to be different in
W
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shape. At these low energies the excitation cross sections are dominated by shape U
: resonances —Zﬁ for CO™ and 259 for N;. The temporarily bound electrons in these
' resonances are trapped in the molecular orbitals p- for €O~ and =g for Ng which. )
in the united-atom limit, coalesce into p- and d-type atomic orbitals, respectively. o
Thus the angular momentum quantum number of the autodetaching electron ic i =1 for .
C0 and 2 for NZ’ which, of course, influences the angular distribution. :
: {
e) iesooiasive Atiachrent s
s . . . 0
Dissociative electron attachment to CO can lead to two possible stable negative ions 9
C” and 0 . Due to the difference in the electron affinities of C and 0, the thres-
holds for production of the two ions are different. For example, the process .
e+ C0-C+0
: is pussible only for electron impact energies >»9.63 eV, while the process
i -
- e+ C0~-C +0
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has a higher threshold of 9.82 eV. Moreover, the cross sectiorn for the formation
of C” via dissociative attachment is smaller than the cross section for 0~ forma-
tion [7.87,88]. Figure 7.12 shows [7.51) the global behavior of O  production from
C0. The threshold peak at 9.6 eV results from the lowest excited E 27 shape reson-
ance of CO” and gives a maximum cross section of 2 x10_19cm2, The vertical onset of
the attachment cross section indicates that this 2; resonance of CO” must be attrac-
tive in the Franck-Condon region. The structure on the high-energy side is related
to the formation of ¢*(!D) [7.78].

The sharp rise in 0° production from CO for electron impact energy larger than
20 eV arises from the process of polar dissociation (7.51]1. The threshold for this
process

e+C0-C+0 +e

1s 20.89 eV. The threshold for polar dissociation leading to C, namely.

e+C0-C +0"+e

is 23.44 eV. Note that even though the peak cross section for 0 formation by polar
dissociation is comparable to that by dissociative electron attachment, the rela-
tively high threshold of polar dissociation makes that process a less efficient
source of negative ions.

The cross section for (° formation by attachment to CO, at its peak, is approxi-
mately a factor of 3000 smaller than the cross section for 0 formation {7.8&1. An
almost vertical onset at 10.26 eV gives a peak cross section of only 7 »10_23cm2.
The difference between the observed onset and the expected threshcid is interpre-
ted (7.34] as due to the predissociation of the 2:+ resonant state of CO™ by
another resonant state leading to the C'(AS) +O(3P) dissociation limit. This inter-
pretation is further reinforced by the observation [7.34] of peaks in the variation
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of C ion current with the incident electron impact energy. The first two peaks at M}
) 10.27 eV and 10.50 eV are clearly related in their energy position to the vibra- {
tional levels v=1 and 2 of the 22+ resonant state of CO™ at 10.04 eV. )
:
7.2.4 Hydrogen Chloride X
a) Resonancee d
The structure of the resonances of HC1 is of special interest because of the highly ’a
polar nature of this molecule. The permanent dipole moment of HC1 (1.11 D) is slight- %;
ly smaller than the critical value (1.625 D) needed to bind an electron to a polar
molecule (7.89]. The role played by the quasi-bound virtual state of the projectile
electron in the dipolar field of the molecule in explaining the cbservations of W
the vibrational excitation still remains a matter of discussion [7.90). The fact l‘
that both the constituent fragments of hydrogen chioride nave positive electron af- ﬁ
finities implies that, asymptotically, the potential curves of the resonant states .}
of HC1™ are bound relative to the ground X 1:* State of HC1. In the united-atom Timit )
the configuration of the ground state of HC1 is M
’
(155)2(250)2(2pe) 2 (2p=)  (35c) 2 (3pc) 2 (3pm)* x 12¥ . 3
The lowest resonant state is obtained by placing the extra electron in the 4sc :p
molecular orbital. Also, noting that the electron affinity of the €1 atom (3.61% eV) J
is larger than the electron affinity of the H atom (0.754 eV) and that both H™ and .s
€1 have no known excited states [7.281, the lowest resonant state asymptotically )
correlates with the limit H+C1 . In fact, using the Wigner-Witmer correlation ﬂ
rules [7.91], it is easy to infer that the only resonant state of HC1™ dicsociat- 4
ing into H(ZS) +C1'(15) has symmetry 22+. The other rescnant states, dissociating g
into H°(IS) +C](2P), have possible symmetries of 2:+ and 2?. ¢
It has been pointed out [7.92] that because of the highly polar nature of the '
molecule HC1, "electron trapping states” can also arise due tc the dipolar field Lf
of the molecule. As the internuclear separation increases, the dipolar field tends
to zero and these quasi-bound states merge into continuum stetes. Indeed, ab initic ;i
calculations [7.92-95] of the potential curves of HC1 ™ show several states of 2:+ !(
symmetry which exist only in the region of equilibrium internuclear separation X
(1.27 A) and cannot be followed at larger values of R. The second-lowest state of -
4 HC1™ with 22+ symmetry exhibits an attractive potential curve that runs parallel ;f
to the X lz+ curve of HCl fcr internuclear separations less than ~Z A and merges :»
into a continuum state for larger separations. The mechanism responsible for the :‘
trapping of the incoming electron cannot be the centrifugal barrier since the domi- ;.
- nant component of angular momentum is an s wave. The dipolar field of the molecule )
HCY is on the verge of binding an s electron; small displacements of the nuclei \Q
. can cause an s wave bound state to appear or disappear. Such states are referred to ':
) i
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as the virtual states of the system [7.96]. The virtual states merging into con-
tinuum states, in the case of HC1™, would not be dissociating into atomic anions
but rather into H +C1 +e. Whether these quasi-bound states in the dipolar field
can be construed as bona fide resonances remains a topic of current discussion
[7.95].

The lowest state of HC1™
separations, with H +C1 .

with 22+ symmetry does indeed correlate, at infinite

The potential curve for this resonant state is calculated
to be an attractive one; however, the location of the potential minimum is not

well established. The two ab initio calculations for the resonant states of HC1™
dissociating into H™ +C1 provide conflicting results. For example, one calculation
{7.93] gives a purely repulsive potential curve for the 25 state of HC1™, while the
other [7.94] shows a weakly attractive curve for the same state. An experimentally
derived potential curve for tne 2?
region [7.97].

state is repulsive at Teast in the Franck-Condon

b) Vibratiornal Excitatiow

Experimental observations [7.98,99) of the total cross sections for the excitation
of the low-lying vibrational levels of HC] reveal some interesting features. First,
the cross sections show a pronounced peak, about 0.2 eV wide, at the threshold, for
excitation to each final vibrational level Ve =1,2,... . A small cusp is observed
in the cross section 01 at an impact energy which corresponds to the cpening of
the second vibrational level. Second, all the excitation cross sections show a
broad peak at electron impact energy of ~2.5 eV. Third, the absolute magnitudes of
the total excitation cross sections are about one or two orders of megnitude larger
than expected from the Born approximation calculations [7.100). The polarization
effects are estimated to be small so that inclusion of the polarization interaction
would not be sufficient to resolve this discrepancy. It is thus inferred that the
excitation to Ve =1 and Ve =2 levels of HC1 is not a direct (or potential) excita-
tion. An isotropic distribution of the scattered electrons further supports this
conclusion. '

ihece experimentsl OlservaciOns have inspired a number of calculations and inter-
pretations of the vibrational excitation cross sections [7.90,92,101-1047. Stabiliz-
ation calculations of the 21+ states of HC1™, for fixed nuclei, indicate & state
whose potential curve, running paraliel to the potential curve of the ground elec-
tronic state of HC1, can be followed only for small values of R. {In the stabiliz-
ation procedure, roots of the Hamiltonian matrix that remain stable on increasing
the size of the basis set are interpreted to mimic the true energy eigenvalues of
the Hamiltonian [7.105]. This procedure, however, does not provide information, for
positive roots, as to whether the stable root is a resonance or a virtual state.)
The curve of this second-Towest 22+

from the X 1z* state of HC1. This

state of HC1™ is displaced by at most 0.32 eV
2.+

state has been preposed {7.9z) tc be respon-
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sible for the strong threshold peak in the vibrational excitation cross sections ﬁ
of HC1. The facts that the peak in the cross sections occurs about 0.32 eV above }
the threshold and that the angular distribution of the scattered electron is iso- At
tropic are consistent with the energy position as well as the 2:+ symmetry of this v
state of HC1 . Subsegquently, it has been shown [7.106] that the two lowest 2:+ s
states of HC1™ exhibit characteristics which are expected of virtual states. It }
is further shown that on taking nuclear motion into account, a virtual state in )\
the fixed nuclei approximation leads to a separate virtual state associated with Ky
each vibrational excitation threshold. That would account for the sharp peak ob-
served at the threshold for excitation to each final vibrctional level Ve =1,2,... . }
Iy
The results of a model calculation {7.1011, for the vibrational excitation cross "
sections employing two adjustable parameters, are shown in Fig.7.13. These calcu- ?
lations invoke the idea of a virtual state to account for the enhancement of the de- ;
4
parting electron's wave function near the moiecule. The main threshuld features of
the observations for both 01 and g2 are satisfactorily explained by these calcu- 4
[
lations. 4
The s wave virtual state model is not the only one that explains the thresheld ;
structure in vibrational excitation functions of HCl1. For example, the threshold L
e
peaks can also be qualitatively explained [7.102] by assuming a discrete electronic
A
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state of HC1™ coupled to a continuum distorted by a long-range strong dipole poten-

tial. It is, however, to be noted that a permanent dipole moment of the molecule is
not essential for the occurrence of threshold peaks since a number of nonpolar mole-
6° a1so exhibit [7.107] threshold peaks. Recent ab
initio calculations, using static, exchange, and parameter-free correiation-polariz-

cules, for example CO2 and SF

ation interactions, provided vibrational excitation cross sections which were about
a factor of ten smaller in magnitude but had the semblance ¢f a threshold peak
[7.100]. Thus it is rather difficult to decide unambiguously about the merits of
various calculations of the vibrational excitation cross sections of HC1.

c) [Mssociative Attashront

Dissociative electron attachment to HC) can result in the formation of either C1~

or H . Due to the larger electron affinity of the C1 atom, the threshold for pro-
duction of C1~ is lower than that for H . Furthermore, the peak attachment cross
section Teading to C1~ production is about an order of magnitude larger than that
for H™ production [7.35,108]. Experimental observations of cross sections for elec-
tron attachment to HC1 are summarized in Fig.7.14. Detailed observations reveal

the following features: (a) The cross section for C1~ production has an almost ver-
tical onset at an electron impact energy of 0.82 eV. Regularly spaced decreasing
step structures, with an energy spacing of C.3 eV, are observed on the higher-energy
side of the peak [7.109,110). (b) The cross section for H production, as a function
of the incident electron energy, shows two peaks [7.111]. The first peak has 8

steep but nonvertical onset at 7.1 eV while the second peak gradually rises to a

<20
I n 1 " 1 1
° (o} 1.0 2%/ 6

E (eV)

A L 1
8

10 12

Fig.7.14. Total cross sections for the production of €1~ and H by dissociative
electron attachment to HCI
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maximum at 9.3 eV. (c¢) Internal heating of the HC1 molecule in the form of rovi-
brational excitation enhances the attachment cross section, analogously to HZ’ by
several orders of magnitude [7.112].

V- -

A number of calculations as well as further experiments have been carried out

to understand these features. The step structure on the higher-energy side of the

C1” peak is seen to occur at energies coincident with the vibrational thresholds of
HC1. At the threshold for C1° formation, the energy of the incident electron is

comparable to the vibratioral spacing of HC1 and thus the use of nbnloca1 formalism

[see {7.1.12) and recall that the summation contains all oren channels only]l is es~

s e

sential for the computation of attachment cross sections. Now as the incident elec-

tron energy is increased, every time a new vibrational level is reached a new exit
channel for the electron detachment opens up, which results in a reduction in the ,

electron attachment cross section. This explains [7.113] the step structure ob-

served on the higher-energy side of the C1~ formation cross section.

Angular distributions of H  ions produced by electron attachment to HC1 provide -

clues about the nature of the peaks in the H  production cross sections at 7.1 eV

and at 9.3 eV [7.97]. For example, at an incident electron energy of 7.1 eV, the

angular distribution of H™ jons shows a maximum at 90° and a minimum at 55° which

is characteristic of a dc wave. Similarly, at an incident electror energv of 9.3 eV, !

the angular distribution of H™ shows a behavior that is characteristic of a d- wave.

These observations clearly indicate that the peaks at 7.1 eV and 9.3 eV are assuci-

ated with the production of H™ ions via intermediate HC1™ states of symmetries 2;+

and ZH, respectively. Observations also reveal [7.97] fine structurec superimposed A

on the higher-energy side of the broad 9.3 eV peak. These structures are believed

to occur due to the interaction of the 2: repulsive state of HC1™ with the X ¢ state '

of HOIY as the grandparent.

Finally, observations of the temperature dependence of the attachment cross sec- ¢

tions reveal [7.112] a dramatic dependence of the cross sections on the initial

rovibrational energy of the molecule. For example, the threshold cross secticr is !
enhanced by factors of 38 and 880 for HC1 and by factors of 32 and 58C for DC1 when t
the attaching molecule is excited to v =1 and v =2 levels, respectively. Applicatione

of a nonlocal resonant scattering model to electron attachment to HCY and DC1 have

met with only partial success [7.114]. These semiempirical calculations show only

qualitative agreement with the experimental observations; further improvements in

the calculations are necessary for any quantitative predictions [7.115].

7.3 Applications of the Attachment Process Under Nonequilibrium
Conditions

The process of dissociative electron attachment has been impcrtent in mény practi-
cal applications. In particular, the process plays @ key rcle in the proguction of 4

high-energy beams for neutral injection in fusior plasmas, the kinetice of plasma
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switches, the analysis of attachment-induced instabilities in laser plasmas, the
selection and application of gaseous dielectrics, etc. The rovibrational excitation
of the attaching molecule enhances the rate of electron attachment. The degree of
enhancement differs from one species to another and, depending upon the nature and
the internal energy of the attaching molecule, can be as much as several orders of
magnitude compared to the unexcited gas.

7.3.1 Neutral Beam Injection in Fusion Plasma

For future production of high-energy beams of neutral atomic hydrogen and deuterium,
the fusion community has become aware of the possibility of using the negative ion
beams as intermediaries [7.1161. In the past, production of high-energy neutral
beams has been achieved by neutralizing the accelerated positive ion beams. How-
ever, due to their low efficiency of neutralization, the positive ion beams tech-
nology is quite difficult. The negative ion beams can be very efficiently produced
by dissociative electron attachment to H2 or DZ‘ The rovibrational excitation of
the neutral molecule aids the production of the negative ion beams. After acceler-
ation, the negative ion beam can be neutralized, with high efficiency, using photo-
detachment techniques. The high-energy neutral beam can be used tc heat the fusion
plasma as well as to provide the fuel. Presently both H and D™ are being considered
for neutral beam injection in different experimental resctor designs [7.117].

7.3.2 Electron-Beam Switches

The feasibility of using a discharge ionized by an electron beam, for use as an on-
of f plasma switch is presently under consideration [7.11&). It has beer demanstrated
that electron beams of current densities as low as 10 mA/cm2 are capable of producing
discharge {or switched) currents &s high as 1-10 A/cmz. Thus, 1t seems poscible to
have current gains, that is, the ratio of discharge-switched current to the elec-
tron-beam current, as high as 1000 or so. For high repetition switching rates it

is desirable to have as small a decay (cor switch-off) time as possible. This can be
most effectively achieved by introducing an electron attaching gas into the dis-
charge plasma [7.118). The rate of dissociative electron attachment tc this gas then
controls the decay time of the switch. The rovibrational excitation of the attaching
molecute helps in two ways: first, it enhances the attachment rate and thus lowers
the decay time. Second, the rovibrational excitation Towers the threshold of elec-
tron energy for dissociative electron attachment to occur. It is important, however,
that the attachment should not introduce too high a 1oss in the on condition. Several
polyatomic attaching gases are successfully used in plasma switches. Amung diatomic
molecules, HC1 seems to be a prime candidate.

N
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7.3.3 Laser Plasma Instabilities

Plasma instabilities in the form of striations (or ionization waves) often have
been observed in self-sustained discharges used for CO2 lasers [7.120]. In general,
these instabilities arise due to the presence of a gas that is capable of producing
negative ions via dissociative electron attachment and are referred to as the at-
tachment instabilities of the laser plasma. The conditions necessary for the occur-
rence of instability are (i) that the rate of dissociative electron attachment in-
creases with electron temperature and (ii) that the attachment and ionization rates
are comparable in magnitude. If the effects of other processes governing the gain or
loss of electrons, for example electron detachment and electron recombination, are
negligible, then during any positive fluctuation of the electron temperature, more
electrons are lost by dissociative attachment than are gained by ionization. The
net loss of low-energy electrons thus leads to a st11] higher electron temperature
and a smaller electron density. The fluctuation in electron temperature thus grows
and leads to attachment instability. In CO2 and CO laser discharges, the dissocia-
tive electron attachment rates are strongly increasing funct:ons of the electron
temperature and the ionization and the attachment rates are comparable so that the
conditions for the attachment-induced instability are easily met.

7.3.4 Gaseous Dielectrics

For a gas to act as an efficient dielectric, it should be able to sustain large
applied electric fields without causing gaseous breakdown. As the applied electric
field is increased, & large fraction of the free electrons in the gas attain suf-
ficient energy to cause ionization which eventually leads to the breakdown of the
gas. The optimum dielectric efficiency of the gas is thus achieved by lowering both
the energy and the number density of free electrons in the gas. Both of these pare-
meters are controlled by introducing, in the dielectric medium, a gas with large
cross sections for dissociative attachment and vibraticnal excitation by electron
impact. The vibrational excitation reduces the average energy of the free electrons
while dissociative attachment reduces their number dersity. Basic information about
dissociative electron attachment and vibrational e»citation is thus impertant for
the development of gaseous dielectrics [7.121].

7.A Appendix: Normalization of Continuum Functions

The expressions for cross sections for DA and VE, as given by various authors, ap-
pear to differ depending upon the normalization of the continuum functions used.

In this appendix we summarize the properties of momentum-ncrmalized and energv-
normalized continuum functions.
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Consider the functions

1 .
y(k,r) = <“13)2e1k.r i
8+
mk \li iker mh )2
S(E,r) = < e = ( Y (k. .
' 8r f_l-?)
with
E - h 2‘(‘ \ .
T \m )

Then the orthonormality relations among these functions are

fk - k) = UK 1 k)

*
[ (kor)s k', rydr G

[ 87 (kor)e (kor' Yok

"
g
—
-
'
-
—~—

[ E P (B ) dr = S(E - E') = S(E - E)ik - k),

f 1‘(E,F)Q(E,r')df = (‘(r -~ r')

The probab111ty flux densities associated with -{k.r} and ¢/E,r) are (hk;873m) k

and (k 2’8~ h)} k, respectively. The asymptotic forms of the momentum- anc energy-

normalized functions are obtained by using piane wave expansions. These are

vik,r) = i if\)(k,r)th(k)Ylm(F) nd
“ - Y 5t oy !
s(E,r) = ’;‘1 o (Esm)Y, ()Y (r)
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Cross sections for vibrational excitation (VE) of the X * £ state of Liy via formation of the excited Ay or B111
£ 2 u U

electronic states are reported. For VE through the AY v s

tate, the cross sections are nearly constant for forming X ! .‘_5

+

(3 < u" < 9) via electron collisional excitation. For photon pumping (660 < A < 700 nm) of the A '} state, lovehs o™ €
9 are predominantly formed. VE via the B 11y state has 2 lower probabihity .

1. Introduction

The negative ions of light atoms are currently be-
ing studied for their possible applications in gaseous
discharges. fusion plasmas and gas lasers [1}. A possi-
ble source for the volume production of atomic anions
is the process of dissociative electron attachment to

molecules {2]. The rate of negative ion production by

this process is enhanced, sometimes by orders of mag-
nitude . if the molecule is initially rovibrationally ex-
cited {3-5]. Vibrational excitation of the molecule
can be achieved either via a resonance (molecular
anion) formation or via excitation of the higher elec-
tronic states of tlie neutral molecule. In this paper.
we present ¢ross sections for excitation of vibrational
levels of the ground X ‘E; electronic state of Liy via
electronic excitation to the A 1Z? and the B 11T,
states of Lis.

In the processes under consideration, the elec-
tronic excitation of Li, to higher singlet states oc-

curs either by electron impact or by photon puniping.

Schematically .

% Supported in part by AT OSR under Contract 1 4962083 -

0094 und Grunt A1 OSR-§40143.
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e+ LinXIZH~ LAl BT )+e. (1)
or
LisX 1}y + he—» LY(AS] BN (2)

The excited molecule undergoes rapid radiative decay
which returns the molecule to an excited vibrational
level of the ground electronic state:

LiS(ATZE BN, ~ LX) + e (3)

In order to obtain the cross sections for vibrational
ewcitation by these processes. one needs the potential
energy curves and the vibrationa! manifold of the
X1t ATEY and BT, states of Lia. Fortunately.
these states have been extensively studied and accurate

potential curves are available [6—8]. Using these data.

the band strength (or transition noments). Franck —
Condon factors and transition probabilities (or
Einstein 4 coefficients) have been caleulated for hoth
the X - A and X — B transitions. Fronm this informa-
tion. the fraction of clectronically excited molecules
decaying into a particular vibrational level v of the
ground electronic state can be caleulated. The abso-
lute cross sections for vibrational excitation are then
obtained by multiphying this fraction by the toral

0 009-2614/85'S03.30 O Elsevier Saoience Publisheic BV
(North-Hollund Physics Pablishing Dinasion)
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cross section for electronic excitation. We are able to
obtain only the relative cross sections for vibrational
excitation via electron collisions since information is
not presently available on the electronic excitation
cross sections of Li,.

2. Theoretical considerations

We consider here the vibrational excitation of the
ground X ! I3 state of the Li; molecule by radiative
decay from either the A 1T} or B 11T excited states.
Population of these excited states can be achieved by
either electron collisions with ground-state molecules
or by photon pumping. via lasers as an example. The
resultant vibra'ional distribution, in either case, is
governed primarily by the product of the probability
for electronic excitation and the transition probabil-
ity for radiative decay back to the ground state of Li,.

For either mechanism, we take the probability for
electronic excitation to be proportional to the band
strength for optical absorption. This is accurate for
photon excitation and has been shown by Rudge [9]
and Hiskes {10] to be a reasonable approximation for
electron excitation, provided the vibrational depend-
ence of the excitation cross section can be factored
using the Franck —Condon approximation.

2.1. Electron excitation

The probability for electron excitation from the
ground vibrational level of Li5(X ’Z*) to the v level
of either the A1ZY or BI111, excited state can be
taken as

A(B) ~ pA(B) A(B)v

PABIY =~ pA ,,_O/EPXU_O. (4)
where the band strength,PQ(L?)"" is defined as the
matrix element of the electronic dipole moment
D(R):

PRI = (y(X,")ID(R)W(A(B). v )2, (5)

and an average over rotational motion is assumed.
The fraction decaying back to any discrete vibrational
le .el v” of the ground X ‘Z; state, from a particular
vibrational level v’ of the excited state. can be obtain-
ed by summing the appropriate Franck—-Condon fac-
tors,

A Tt I A Va8t T T L S L T Ty
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048wy = 25 gABL (6)
u

We shall see that this fraction is nearly unity for the
states considered here. Any deviation from unity arises
from the possibility of radiative decay to the contin-
uum of X 1 Zg. The probability for a transition from
the excited electronic state back to the ground state
is given by the Einstein 4 coefficient. The fraction of
transitions from level v° of A(B) back 1o level v" of X
can be written as:

),A(B)v _AA(B)U/EA)A‘(E),U . (7)

The total cross section for populating a particular vi-
brational level v” of the ground X 13+ state via elec-
tron excitation of A'! Z%andB lﬂu can then be written
as

o1(v] = 0,v;. €)= 0, (v} =0, v5,€) + 0(v]=0. v, €)
= oy (e) FR(] =0,v) + 05(e) FR(v] =0.v7). (8)

where

FAB ! =0, ) _E PAB QABI ), :(5) © (9)

and OQ(B’(EJ is the total cross section for electronic
excitation from X ! £} 1o the A(B) state of Li, Since
we are interested only in reiative cross sections, we
have for electron excitation via either A1Z? orB 11,

R B! =0.0))
=0, 1)(0; =007 €)/04 (v, =0, v = 0. €)

= FR®) =0. v }F3Biw = 0.vf =0). (10)
2.2. Photon excitation

The cross section for photon excitation of the
AYZ}or BT states from the ground vibrational
state of Liy(X} £3) can be written as

ox®(vy=0.v') = (4n? /zhc)P;}‘lf"_‘U : (1)

The total cross seuuon for populaung a particular
vibrational Jevel vy of the ground 1 = = * state via photon
excitation of cither AT} or BT 15
A(B)w =0.v. U ") = A(IH( =Q. U)QA(B)“)“A(HH
( lli
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Eq. (12) exhibits an implicit photon energy depen-
dence through the X(v") = A(v') or B(') transition
wavelength.

3. Results and discussion

The ratio of cross sections, defined by eq. (10}, for
vibrational excitation of Liy(X 1 Z7) by electron im-
pactexcitation of the A} =} and B i:ﬂu states is shown
in fig. 1 as a function of the internal vibrational energy
of Liy. Excitation via the A 1 =} state yields a rela-
tively flat final vibrational level distribution in the
range 3 <v" <9. Excitation via the B !l state leads
to a vibrational level distribution that falls off rapidly
for increasing vibrational energy in the product Li,.
Fig. 1 suggests that excitation of A 1 Z¥ by electron
impact energies 1.80 < e < 2.5 eV should produce a
ground-state vibrational distribution well suited for
efficient dissociative attachment of low energy elec-
trons:

e+Li‘2‘—»Li+Lr. (13)

In contrast, the B 1I’lu state of Li, appears to be less
efficient for populating the vibrational levels of
Li)(X 1Zf) withv” 2 4.

The cross sections for vibrational excitation of
Li,(X ! £7) via photon pumping of AT and B 11,
are shown in figs. 2 and 3, respectively. The largest
cross sections are found to occur for excitation of v’
= 1-4 of either the A1 Z} state or B 11 state. The

Cross section ratio,
=0, vy)

- "
J\ xA(B) (v :

0 —l L
0 01 02 03 04 05 06 07 08
Internal energy. E(v,")

Tig. 1. Relative cross section for the excitation of the vibra-

tional levels of Ligth 1}.’5) by electron collisional excitations

through the A and B states.
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Laser wavelength, A (nm)

713 689 666 646 627
T ™ T T

Excitation cross section, 7 (Mb)

0 2 4 6 8
v', upper state vibrationa! level

Iig. 2. Cross section for the excitation of the vibrational levels
of Liz(X ' £3) by photon excitation of the A ' £}, state

resultant vibrational distribution of X ! 2.: is rather
flat for excitation via the A ! E: state but exhibits a
rapid fall-off for B 111  excitation.

4. Conclusions

Analysis of the band strengths for excitation of
the A1Z? and B! I1, states and their subsequent ra-
diative decay indicates that nearly 100% of the orig-
inal excitations through either the A or B state re-
turn to the discrete vibrational levels of the ground
X! E; state. By summing eq. (9) over all final states,
vy . we find the decay to the continuum to be less
than 0.1%. This result for Li, is thus significantly
different from that reported by Hiskes [10] in a sim-
ilar study of e + H, collisional excitation, where
there is nearly a 407/ loss to the continuum upon ra-
diative deexcitation.
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Laser wavelength, A (nm)
490 484 467 457 448

Excitation cross section, ¢ (Mb)

10-4 ] [l 1 1
0 0 2 4 6 8 10
v', upper state vibrational level

Fig. 3. Cross section for the excitation of the vibrational
levels of Liy (X! .‘:gy by photon excitation of the B 11 state.

Although we do not yet report absolute cross sec-
tions for vibrational excitation by electron collisions,
clearly the Lij system has advantages from the stand-
point of efficiency of vibrational excitation and from
the relative location of the excited states, which
should permit efficient selective excitation of A1 Z}
with a properly conditioned electron beam. Recent
studies by McGeoch [11.12] of dissociative attach-
ment (DA) in this system, via eq. (13). indicate that
vibrational excitation of Li, by photon excitation
produces a final Li, distribution which exhibits a large
DA rate for collisions with low-energy electrons.

Further studies of the electronic excitation cross

CHEMICAL PHYSICS LETTERS
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sections and dissociative electron attachment rates for
this system are in progress.
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¢,
The second Born contribution of long-range forces to higher )
. . b
partial-wave phaseshifts '
J M Wadehra !
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202, :
USA A
¢
‘ Received 1 August 1986 4
¢
Abstract. An exact analytic evaluation of the second Born contribution of the long-range l:
potentials, which fall off as r™" as r-oc, to the phaseshifts of higher partial waves (
(21>2n-5) is presented. This expression agrees, for n = 4, with the second term in the %
energy expansion of the phaseshifts obtained previously by Ali and Fraser. The expression
can be used for predicting higher partial-wave phaseshifts as well as for determining the v,
phaseshifts from experimental scattering data. 0

The scattering of a particle of energy E = h%k?/2u by a spherically symmetric potential ;
can be best described in terms of phaseshifts, of various partial waves, which are 4
functions of the wavenumber k. For long-range potentials which fall off as r™" when
r- oc, the computation of the phaseshifts for any angular momentum ! requires special
consideration. For example, in the scattering of a charged projectile by a neutral

polarisable system, where the dominant long-range effect is the 1/r* interaction arising ::
from the adiabatic dipole polarisability of the target, it is known that the leading term )
in the energy expansion of the higher phaseshifts is proportional to k’ independent >
of I (O’'Malley et al 1961). The I-dependent coefficient of this leading term was obtained :
analytically by O'Malley et al. The next term, proportional to k*, in the energy :
expansion of the higher phaseshifts (/=2) for the 1/r* interaction was obtained :
analytically by Ali and Fraser (1977). Using mathematical arguments it has been shown "
(Levy and Keller 1963) that the leading term of O’Malley ef al is identical to the first ‘:
Born contribution of the long range 1/r* potential to the higher phaseshifts. In this :
- paper we show explicitly that the next term obtained by Al and Fraser is essentially 5
the second Born contribution of the 1/r* potential to the higher phaseshifts. Thus, b
our analysis will provide an alternative derivation of the second term in the low-energy ::
expansion of the higher phaseshifts. In fact, the procedure given below can easily be %
extended to obtain explicitly higher Born contributions to the phaseshifts for any i
long-range interaction.

. Since long-range potentials of various inverse powers of r appear in several 3
applications in atomic and molecular physics, we consider a general long-range spheri- :u
) cally symmetric potential of the form $
Vir)=C,al™" e*/r" (1) |

where the constants in the coefficient (e is the electronic charge, a,= h”/me’ is the
0022-3700/86/210761 + 04%02.50 ( 1986 The Institute of Physics L761 :
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L762 Letter to the Editor ::
.i
Bohr radius and m is the mass of the electron) have been chosen so that the C, are 4
: dimensionless. The final result will be simplified only for n=4. The second Born
contribution to the phaseshift of the Ith partial wave for a spherically symmetric :‘
potential V(r) is (Joachain 1975) v
'
. ';
® !
(tan 8,);, = —k* I dr r?ji(kr)(2uV(r)/ k%) ::
(1]
xj ar' r3i ke Y2V () B2k m(krs). (2) 3
(1] ,)
Substituting for V(r) from (1) into (2), one gets :.;
y
(tan &), = —8[ C(p/m)(kao)"*V1 (3a) k -
where ™
o« 1 :i
I =I dy y* *ji(y)m(y) I dx x* i (xy). (3b) "
(1] ] 1
t
Note that, for given n, the k dependence of the phaseshift can be determined trivially 3
since I is independent of k. For the evaluation of ], it is most convenient to work in
terms of Meijer's G function (Luke 1975). Using *
\
172 L "
20 N T A2 b ,
Ji(x) 2 G,;(X L0, —-L) (4a) !
L L. by,
. _—(_ +1 ] ’

Jxm) = (-3 G,g(x oL _L) (4b) ‘
and equation (22) on p 190, equation (4) on p 176 and equation (5) on p 187 of Luke :.
(1975), the integral ] can be written in the following closed form: ﬁ

N t
-n"'w z‘( ‘—Hn,%n,%;-L—Hn,L—Hn) X

I=——G%

16 On\! -3+nL;0,-Lin-1 (5) v

)

with L =1+1. The conditions of validity of this expression are ‘
‘\

gt

n>1 and 2014 5>2n (6) k

For a given n, the G function appearing in equation (5) can be evaluated us.ng standard g
reduction techniques for these functions (Luke 1975). The fact that the above G !

function has unit argument further assists in the simplification. We illustrate this 5
reduction technique for the case of n =4 which corresponds to the adiabatic dipole ;;
polarisation potential. The relevant G function is \
.4
) 3,2,5, -L+3 L+3) .
23 + 2y 2y 3 .
= (7 N
Ge= a1 0T ! 3

where, as before, L = I +3. Using the recursion relations and some elementary properties
of G functions (equations (1) and (2) on p 176 and equation (9) on p 177 of Luke \
1975), one can reduce G, of equation (7) above to a combination of G functions of -

¢
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lower indices:

G.= 1 2,( 5,—L+3,L+3)
TLIL+DAL+2) T 3L, -L

22L+1) G“(
(L+2)(L+1)*LY(L-1)

L—L+3, L+2)
5 Li-L

N 2(sL? ( —L+3, L+l)
(L+2)(L+1)2L2(L )AL -2) 5L, —-L
2(5L% - ( l 1,4 - )
(L+2)(L+1)L2(L 1)3(L-2) 30
23L°~L-1) ,2(]l ,%;—L+3)
(L+1) LYL-1)%L-2) 2.0, ~L

+ 3 G‘( '3,21 L+3)
(L+1)L(L-1)(L-2) ¥ 3.0,-L

3,2,L —L+3)
50,~L,1 )

1

LA DLL-D “"(1 @)

At any stage, the G functions can be written in terms of the generalised hypergeometric
functions ,F,. However, if the last four terms in equation (8) are reduced further, by
using recursion relations, to G functions of still lower indices and then these functions
are expressed in terms of Gaussian hypergeometric functions ,F, of unit argument, it
can be easily seen that the contribution of the last four termus in equation (8) is zero.
The first three terms in equation (8) can be expressed in terms of hypergeometric
functions ,F, of unit argument which can be evaluated by using Dixon’s and Saal-
schiitz's formulae (pp 163-4 of Luke 1975). The final result is

Go=[(-1)'/16(L+2)(L+ 1) L3(L-1)X(L-2)}(15L* - 35L%+8). (9)

Thus the second Born contribution of the 1/r* interaction to the phaseshifts of higher
partial waves (I1=2) is

1SL*-35L°+8
(L+2)(L+ 1)’ LY(L-1)(L-2)

(tan 51)11-55(C4 (kao)z) (10)
with L=1+3. This agrees with the expression given by Ali and Fraser (1977).

For large separations between a charged projectile (of mass ) and a neutral atomic
or molecular target, the first two terms of the interaction energy, in the adiabatic
approximation, are

V(r)=—jasase’/r*—aqaze’/r® (11)

where ay and e, are the static dipole and the quadrupole polarisability, in atomic
units, of the target, respectively. The first Born contribution of the r™* and r™® terms
of equation (11) to the phaseshift of the Ith partial wave (/2 2) is (Levy and Keller 1963)

pw (ka,)’ ( 3ag(kay)’ )
agy

(tan §,),=

(12)

m (ZI+3)Q21+1)(21-1) (21+5K21-3))°

o

L)

-0
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]
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-
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The first term is, of course, the one also given by O'Malley er al (1961). In many
previous investigations, equation (12) has been used for obtaining phaseshifts of higher
partial waves from known values of a4 and a, or for experimental determinations of
the phaseshifts by fitting the experimental scattering data. However, the second Born
term of equation (10) siould also have been included in such analyses since it has the
same k dependence as the quadrupole term in (12). Numerical applications of (10),
clearly showing the importance of this term, have been provided by Ali and Fraser
(1977).

This research is supported, in part, by the Air Force Office of Scientific Research under
Grant Number AFOSR-84-0143.
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Exact evaluation and recursion relations of two-center harmonic oscillator

matrix elements
P.J. Dratlos and J. M. Wadehra

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202

(Received 16 July 1986; accepted 21 August 1986)

Using vibrational wave functions of two relatively displaced harmonic oscillators of arbitrary
frequencies, Franck-Condon overlap integrals and matrix elements of x', exp( — 2¢x), and
exp( — ¢x?) (x is the internuclear separation) are obtained. Useful three-term, four-term, and
five-term recursion relations among these matrix elements are derived. It is shown that all of
the relevant matrix elements can be obtained from a mere knowledge of the lowest two
Franck—Condon overlap integrals. Results are illustrated by computation of Franck—-Condon
factors for the 4 ‘X -X '3." and the B 'II,-X '2* systems of "Li,.

1. INTRODUCTION

A quantitative description of transition probabilities for
various vibrational levels (that is, vibrational excitation) as
well as of intensities of various lines in the spectra of diatom-
ic and polyatomic molecules requires matrix elements of var-
ious powers of the internuclear separation x between vibra-
tional levels belonging to two different electronic states of
the molecule.' A Franck-Condon overlap integral is a spe-
cial example of such a matrix element. For low-lying vibra-
tional levels, the potential curves of the molecular electronic
states can be represented with reasonable accuracy by those
of linear harmonic oscillators. For higher vibrational levels,
where anharmonicity becomes important, the potential of a
Morse oscillator is a better representation of the true poten-
tial curve. Even in such a case as the Morse oscillator, if one
were to use first-order perturbation theory with the linear
harmonic oscillator as the zero-order approximation, the
matrix elements of powers of x would appear in the correc-
tion factors. With this spirit in mind, an attempt is made in
this paper to obtain general analytic expressions and simple
recursion relations for two-center harmonic oscillator ma-
trix elements of various functions ( powers, exponential, and
Gaussian) of x. In fact, a general five-term recursion relation
to be derived below [Eq. (32)], is valid for any analytical
function of x that could be expanded as a power series in x.

The evaluation of Franck—Condon factors, which essen-
tially involves an overlap integral between wave functions of
vibrational levels belonging to two different electronic states
of a molecule, using linear harmonic oscillator wave func-
tions has been carried out in a number of investigations, and
proper kudos have been distributed by Waldenstrém and
Razi Naqvi.? Various theoretical methods for obtaining the
Franck—Condon factors have been reviewed more recently
by Kuz’menko ef al.’> Overlap matrix elements of various
functions of x using, once again, vibrational wave functions
of two different harmonic oscillators, have been analytically
obtained in some recent papers.*® In Sec. IV of the present
paper we will obtain some general recursion relations among
these matrix elements. A single and double ket notation (for
example, {m) and |n))) will be used to distinguish between
the vibrational eigenfunctions belonging to two different
electronic states.

6524 J. Chem. Phys. 85 (11), 1 December 1986
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Il. THE FRANCK~CONDON OVERLAP INTEGRAL

The relevant potential energy curves are replaced by
those of one-dimensional harmonic oscillators of frequency
o, and w,, with a relative separation of r. For convenience,
define w, = % ( ur?), where u is the reduced mass of the
nuclei. The two-center Franck—Condon overlap integral is
then defined as (m|n)), where

(x|m) = 2"m) ™" [w,/ (mwy) '
X exp[ — ,x%/ (2wy?) 1H,, [(@,/wy) ' 2x/r] (1)

is the wave function of the mth level of the harmonic oscilla-
tor associated with the potential ¥, = } uw?x? and

((x|n)) = (2"n1) [,/ (mwyr*)]'*
Xexp[ — w5 (x = r)3 /2wy ]
XH, [ (w/wy) "2 (x —r)/7] (2)

is the wave function of the nth level of the harmonic oscilla-
tor associated with the potential ¥, = { uw3 (x — r)*. Thus,

(min)) =

(0@,)""* “xp[ — W,W, ]
[7we? (2™ "min) ]2 20y(w, + @)

<ol - |50
. 2w,r
)
- [2wy(w, + w,
XH, [ (0:/wy) 2 (x — r)/rldx. (3
Now, on changing the integration variable from x to

t=x{(0, + 0,)/ 201",
(mln)) = N,,...fr“”j expl — (£ — )’}
2w,

172
<t (G2)
o, + w,

2
)]:/2] l H, {(w/w,)*x/r]

1,2 1/2
) (@) e o
w, + w> [
where
N, = (0,0)"* (0, +©)27" " 'minl] '
xexp( — y'w,/w,)
and

¢ 1986 American Institute of Physics
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y =,/ [2w4(0, + ©,) 1'% (5)

Theintegral in Eq. (4) is of the same form as the integral
defined in the Appendix. A direct use of Eq. (A8) yields a
closed-form expression for the Franck—Condon integral:
W, ~ a)z)(n — k)2

{m,n]
=N,.. "')(")(
{m|n)) kgo(k 2l pray

><(a)2 - wl)(m - k)/Z[ 4((0“02) 1/2 ]k‘

w, + 0, @, + W,

w0 172
< | (G ar) |
wo(w; — oY)

0w, )1/2]
XH, _} - |——————— . 6)
k[ (‘l’o(w% —wi) (

This expression has been obtained, using various proce-
dures, by a number of investigators.®™ It is interesting to
note that for the two special cases, m = O or n = 0, the above
sum reduces to a single term containing only one Hermite
polynomial. [We note parenthetically that the above sum
(6) also reduces to a single term for the case of equal fre-
quency oscillators. ] From the recursion relation for Hermite
polynomials (A3), it follows:

— 172
©fn+2)y =——2_ |22 ] ©ln + 1))
@, + o, Llog(n + 2)
_ 172
_ (“’_l_&) (ﬂ_l) o)y, (D
o, +w,/ \n+2
) 2(0 172
(m +2(0)) = —22 [ ] m + 110
@+, Lo,(m+2)

i 172
(=) (B2 1) mj0)). (8)
o, +w,/ \m+2
In fact, on using the one-term expressions for (0|n))
and (m|0)), Eq (6) can be rewritten as

(min)) = z 2“"%—]( NG
(m — K [0))(Oln — k)Y )
0/0)

Equivalent expressions have been obtained previously by
Manneback® and Smith.® It is remarkable—and this fact has
apparently not been appreciated earlier in the literature—
that the complete Franck—Condon matrix (m|n)) can be
determined using Egs. (7), (8), and (9) from the mere
knowledge of either (0|0)) and (0|1)), or (0|0)) and
(1/0)).

1. MATRIX ELEMENTS OF SOME FUNCTIONS

Now let us consider the two-center matrix elements of
x', exp( — 2cx), and exp( — ¢x?) in the harmonic oscillator
basis. Various matrix elements can be written in terms of
integrals of the form

I[ fte);mma,b, y.z]

=J Aexpl — (1 — ) )H,, (at)H, (bt — z2)d!,
o (10)

which is derived in detail for the case f(1) = 1| in the Appen-
dix [see, for example, Eq. (A8)].

A. Powers of the coordinate x
The required matrix elements can be written as

emicton = 255 ()

XJ tlexpl — (1 —y)?]

X H, (at)H, (bt — z)dr, an
where
a=[20/(w,+w)]"? b= [2w./(w,+0)]"?
and z = (w./w,) "2 (12)

N, and y are defined in Eq. (5). Using Eq. (A13), the
matrix elements of x' can be written as a sum of Franck-
Condon integrals,

(mix'|m)) = [—&%]1

2w, + w,

[md] (nt— p] It 172
xS [ m'n!

p=0 ¢g=0 (m—P)'(ﬂ—q)'

(4wl)p/2(4w2)q/2
({0' + w:)(P"t ll)/'-'p!q!

(=)' 7
(I—p—9)!
X {m —pln —q)). (13)

This expression was obtained earlier by Morales et al.,*
though there appears to be an error in the constants of their
expression.

H/ 2 4(ly)

B. Exponential function exp(—2cx)

Here, in obtaining the relevant integral, we follow exact-
ly the same steps as in the Appendix, Eqs. (A4)-(A6), ex-
cept there now is an extra factor of exp( — 2cz) in the inte-
grand. It leads to the following result for the integral:

I [exp( — 2ct)m,n;a.b, y,z]

= 7% exp(c’ —2cy)( ) ( )

xexp{ — (1 —a)t] — (1 —b7)13
+2a(y— ), + 2lb(y —c) —z)15 + 2abr1,}.
(14)
Except for the constant exp(c® — 2cp). Eq. (14) looks just
like Eq. (A6), and we can immediately write down the final
result:

I {exp( — 2ctymuma.b, y.z|
=exp(c” = 2cp)I [ Limna b,y — ¢.z]. (1%

The matrix element (miexp{ — 2cx) 1)) is related to
I'[exp( — 2c1):mmabp.z) and by using Eq. (15) one can
write

J. Chem. Phys., Vol. 85, No. 11, 1 December 1986
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{m|exp( — 2cx)|n)) = N,,, exp(a® — 2ay)

xI(tmmab,y —azl/m"’,
(16)

where a = c[(2w,°)/(w, + w,)]"* is introduced by a
change of the integration variable from x to the dimension-
less t = x{(@, + @,)"*/ Qeyr) V2

C. Gaussian function exp(—cx?2)

The case f(t) = exp( — ct?) can be worked out in a
fashion very similar to the case of the exponential above.
Following the same steps as Eqs. (A4) and (AS5), we obtain

I [exp( — ct*);m,ma,b, y,z]

=B exp( — cﬁzyz)(—a—) ’ (_a_) "

3[2 =0 3!, =0
Xexp( —ti —t3 —2zt, — B%y*)

Xf expl — t2 — 2(aBt, + bft, + By)t }dt, (17)

where 8= (1 +¢)~ "2

The expression in Eq. (17) has essentially the same
form as Eq. (AS), and we can immediately write down the
result by inspection,

I{exp( — ct*);m,n;a,b, y.z]

= Bexp( — B [ 1;m,n;a6,b8, yB.z). (18)

The matrix elements (m(exp( — cx’){n} ) are related to
the above integral by

(m|exp( —cx?)|n)) = N,,,v exp[ — (1 — ¥*)y’]
I [;m,n;va,ybyyz) /7' %, (19)

wherey = [1 + 2cwy/ (@, + @,)] /% is once again intro-
duced by the change of integration variable.

Summarizing this section, the integral for f(¢) = ¢’ can
be written as a finite sum of integrals for f(¢) == 1. The inte-
grals for the exponential and Gaussian functions can each be
obtained by a simple scaling of an f(¢) = 1 integral.

IV. RECURSION RELATIONS

Four-term recursion relations among Franck~Condon
overlap integrals were derived by Ansbacher’ and, in equiva-
lent form, by Manneback.® These recursion relations are spe-
cial cases of the more general recursion relations, to be ob-
tained below, for the integral I [t';m,n:a,b,y,z]. In the
preceding section it was shown that the integrals for the ex-
ponential and Gaussian functions could be written in terms
of I[1;m,n;a,b, y,z] so that the recursion relations for the
integrals for these functions are also obtained from the re-
cursion relations for 7 [t ;m,n;a.b, y,z].

For brevity, define I,(m,n)=1I [t ;m,n:a,b, y,z] in the
following discussion. Thus,

I, (m,n) =j — expl — (1 —y)21t'H,, (at)H, (bt — z)d!
“ (200

ve §% §Y
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=2al, ,(m—1n)—=2(m~—1)I,(m—2n)
(21)

or equivalently,
2al,, \(mn) =1,(m + Ln) + 2mil,(m — L,n). (22)

In going from Eq. (20) to Eq. (21), the recursion rela-
tion for Hermite polynomials (A3) was applied to H,, (at).
Using the recursion relation for Hermite polynomials on the
H,_ (bt — z) term in Eq. (20), on the other hand, gives

26l (mn) =1,(mn + 1) + 2z[,(m,n)

+2nl,(mun —1). (23)

It is important to note that from Eq. (22) or (23), the com-
plete matrix of any power of ¢ (for example, ¢') can be ob-
tained from the knowledge of the matrix of the next lower
power (namely, t'~'). We reemphasize that the matrix of
Franck—Condon overlap integrals can be completely deter-
mined from a mere knowledge of only two matrix elements,
{0|0)) and (0]1)) (or {(0]|0)) and (1|0))), so, in principle,
the complete matrix of any power of x can be built up from
only two overlap matrix elements.

Using, in the integrands of the terms on the left-hand
sides of Egs. (22) and (23),

texp[ — (1 —y)’] = ——5(%)6)&;)[ —(t—y)?)

+yexp[ — (t —y)?],
then performing integration by parts and the necessary de-
rivatives we obtain

all, ((mmn)=I(m+ L,n) —2nabl,(mn — 1)

+2m(l —a’),(m — L,n) = 2apl, (m,n)
(24)
and
bll, ,(muy=1I1(mn+1)—2mabl,(m— 1,n)
+2n(1 - b)), (mn — 1)
—2(by — z)I,(m,n). (25)

The recursion relations for these integrals can easily be
adapted to the matrix elements {m|x’{n)), using Eq. (11):

2Ir(w,wy) ' (m|x' " '|n))
=[2(m + D]V @, + @,)(m + 1|x'|n))
— (8nw,w>) " (m|x'{n — 1))
+ 2m)V Hws — w, ) {m — x'|n))
— (w,/wy) " 20,{(m|x' )},
2r(w.wy) ' *{mlx' 'n))

=[2n+ D]V (0, +w){mx"n+ 1))

(26)

— (8mw,w) " {m — 1|x'|n})
+ 2m" N (w, — o) mlxn = 1))
+ (w:/w) 20, (m|x" n)). (27)

Equations (26) and (27) are generalized forms of Ans-
bacher’s” recursion relations for Franck-Condon overlap in-
tegrals which are obtained by letting / = 0.
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Equations (22) and (23) can be adapted to the integrals
for the exponential and Gaussian functions by multiplying
the equations by ( — 2¢)!/I! or ( —cr)'/1), respectively,
and then summing over /. This yields, for the exponential
case (suppressing the constants a, b, y, and z):

2al [t exp( — 2ct);m,n]
=TI [exp( — 2ct);m + 1,n]

+ 2mlI [exp( — 2ct);m — 1,n], (28)
2bI [t exp( — 2¢t);m,n)
= [ [exp( — 2ct);m,n + 1]
+ 2zI [exp( -- 2ct);m,n]
+ 2nl [exp( — 2ct);m,n — 1]. (29)

Note that these equations relate the f(¢) = exp( — 2¢t) inte-
gral to the f(t) =t exp( — 2ct) integral. Analogous rela-
tions for the Gaussian case can be obtained in a similar man-
ner.

Equations (24) and (25) [or Egs. (26) and (27)] can
be similarly adapted for integrals for the exponential and
Gaussian functions. For the exponential case, Egs. (24) and
(25) are transformed into

2a(y — o) [exp( — 2ct);m,n]
=TI [exp( — 2¢ct);m + 1,n]
— 2nabl [exp( — 2ct);mn — 1]

+2m(1 —a*)I [exp( — 2ct);m — 1,n], (30)
2[b(y —c¢) —z)I [exp( — 2ct);m,n)
= [ [exp( — 2ct);m,n + 1]
— 2mabl {exp( — 2ct);m — 1,n]
+ 2n(1 — b [exp( — 2ct);mn — 1], (31

Equations (30) and (31) could have been obtained by an
alternative method using the results of Sec. III B, in which it
was shown that the integrals for the exponential and Gaus-
sian functions were related by simple scaling to the /(1) = |
integral. Thus setting / = 0 in Eqs. (24) and (25) or in Egs.
(26) and (27), and using Eq. (15) for the scaling property
of the exponential case, the recursion relations (30) and
(31) are immediately obtained. This alternative procedure
provides a self-consistent check on the present results. A
similar check can be easily verified for the Gaussian case
using the scaling property (18).

Equations (22) and (23) or Egs. (24) and (25) can be
combined to eliminate the integral on the left side in each
case, and obtain a five-term recursion relation valid for the
matrix elements of powers of x. It turns out that the recur-
sion relation thus obtained is very general; since it is good for
any power of x, it will be valid for any analytic function of x
which can be expanded in a power series. Thus,

{m' fix)n)) :< )u{(m + D m 4t fixy n)

w, \!
)
A DY e iy -
ok (32)

Wy,

o,

tm' m - 1 flx) ndy} (

' m flx)n
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where f(x) can be a power, exponential, Gaussian, trigono-
metric function, etc.

V. DISCUSSION AND CONCLUSIONS

For the special case of equal frequency oscillators
(0, = w,), expression (6) for the Franck—-Condon overlap
integral reduces to a series which can be identified as a repre-
sentaticn of an associated Laguerre polynomial.'” Explicit-
ly, for o, = w, = o,
)n — !
w

e

e

m! )

(min)y = (=1~ [7(2‘0’

172
Xexp( — _a)_)] L ) .
2w,

During their numerical evaluation of integrals of the
form {m|x'|n)) for the first positive system of N, Fraser''
and Nicholls and Jarmain'? observed that under certain con-
ditions the following equality nearly holds:

(mlx?|n)) _{mlx|n))
(mlxin)) ~ (m|x’|n))
That this should be true is easily seen by using the recur-
sion relation (22). For the case w>w, and (@/w,)>m,n
[which are equivalent'"'* to the conditions necessary for
equality (34) to hold], itis readily seen that the ratios in Eq.
(34) are approximately equal to } r, independent of m or n.
In order to illustrate the results of the recursion rela-
tions derived above, we have numerically evaluated the
Franck-Condon factors for the A'2-X'3" and the
B'll,-X '3 systems of 'Li, using Egs. (7), (8), and (9).
The harmonic oscillators representing the potential curves
of the X, A, and B electronic states have frequencies 351.43,
255.45, and 269.69 cm ', respectively, and potential mini-
mum at 2.672, 3.107, and 2.936 A, respectively. It is easy to
verify that the first five vibrationui ievels of the above three
simple harmonic oscillators have the same energy levels,
within 5%, as the actual vibrational energy levels of the three
electronic states, indicating that the harmonic oscillator ap-
proximation is reasonable for these levels. The computed
numbers for Franck—Condon factors are compared. in Table
I, with the experimentally obtained values of these factors
for the above transitions in Li, by Hessel and co-
workers.'"'" To make comparison easy, we use a double ket
notation, |m)), to indicate the mth vibrational level of the
ground state (analogous to the double prime. ¢, notation of
Hessel) and a single ket notation, {#). to indicate the nth
vibrational level of the excited 4 or B states (analogous to
the single prime. ¢, notation of Hessel). The results shown
in Table I indicate that the agreement between compur «d
factors, !(m'n)) 7, and experimental values is not encov ~g-
ing even for the low vibrational levels where the harm mic
oscillator is supposed to be a g d approximation. However.,
we note that the agreement becomes reasonable when the
designation of the vibrational quantum numbers of two rel-

n-m
m

(33)

(34)

evant levels are mnterchanged. that s, w hen the experimental

(monyy Ciscompared with COmond Forease of compari-
(i ny)
side in Table I We donotyet understand the reason for this

son, we have displaved and oy Side-by-

puzzhing observation
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TABLE 1. A comparison of the Franck—Condon factors forthe 4 '2,/ -X 'Z,* system (multiplied by 10*) and
the B 'I,-X 'Z. system (multiplied by 10*) of "Li,. A double (|))) and asingle (|} ) ket notation refers to the

vibrational levels of the ground and the excited electronic state, respectively.

Vibrational AV XSy B'Il,-X'S}
qhantum
number experiment (Ref. 14) experiment (Ref. 15)
m,n Hmla) P [mia))2 [mim) 12 [min))]> mia))P [(mm)f*
0,0 53 52 53 3267 3188 3267
0,1 131 176 ) 3149 3827 4104
0,2 182 270 8 1961 2103 2065
0,3 187 250 254 969 698 507
0,4 158 156 153 413 156 55
1,0 180 134 131 4104 3340 3149
1,1 191 197 191 39 77 39
1,2 78 58 54 844 1511 2042
1,3 4 9 12 1692 2711 3127
1,4 15 134 145 1516 1657 1395
2,0 277 187 182 2065 2008 1961
2,1 54 79 78 2042 942 844
2,2 13 15 13 1110 1345 1110
2,13 9 127 120 0.5 63 329
2,4 88 56 51 622 1834 2826
3,0 254 190 188 507 918 969
3,1 12 3 4 3127 1884 1692
3,2 120 98 90 329 1 0.5
3,3 46 45 46 1391 1508 1391
3,4 2 25 20 423 303 28
4,0 153 157 158 55 358 413
4,1 145 18 15 1395 1585 1516
4,2 51 90 89 2826 711 622
4,3 20 4 2 28 550 423
4,4 84 92 84 800 661 800

To summarize, we have obtained explicit expressions
for the matrix elements of x/, exp( — 2¢x), and exp( — cx?),
x being the internuclear separation, in the two-center simple
harmonic basis. It is shown that in principle, the cotnplete
matrices of combinations of these functions could be deter-
mined in terms of only the lowest two Franck—-Condon over-
lap matrix elements. Furthermore, a very general five-term
recursion relation (32) is obtained which is valid for the
matrix elements of any analytic function of x.
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APPENDIX
The integral
I[ f(1)y;mnab, yz)

=f Sexpl — (1 —p) [H, (atYH, (bt - z)dt
’ (A1)

with a, b, y, and z constant, is very useful in the evaluation of
the Franck-Condon factors, and the matrix clements of
powers of the coordinate x. The matrix elements of exponen-
tial and Gaussian functions, exp( — 2cx ) and exp( - ¢x'),

respectively, can also be easily obtained with only slight mo-
difications in the solution of the integral for the case
Sf(t) = 1. To this end, a detailed derivation of the integral,
I(l:m,nia,b, y,z) =1, is given in this Appendix. Some for-
mulas, useful in the evaluation of the integral, and in obtain-
ing recursion relations for it are presented first.

From the generating function of Hermite polynomials,

> H, (x)t"/nt=exp( — 17 + 2x1).
no 0

the following representation for Hermite polynomials is ob-
tained:

H (B/A)=A "(ﬁ)
ot

n

exp( —A°t? + 2Brn).
’ (A2)
The three-term recursion relation for Hermite polyno-
mials is
2xH (x)=H

The integral to be evaluated is

AR

J(x) +2nll, (x). (A3)

"o

1, :J expl - (t - ) |H, (a)H (bt — 2)dl.

(A4)
Using Eq. (A2) for the Hermite polvnomialsin Eq. (Ad) we
abtain

AR
w ()0
e D .,\(}Iw'

- ’ eapl 00 2t -

expl 0t 2oy

<o bt tAS)
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_7112(3‘3,) " 0(6‘3 )n exp[ — (1 —a*)t}
1/ L= 2/ =0

— (1 = b))% + 2abt1, + 2ayt, + 2(by — 2)1,].
(A6)
Carrying out the ¢, derivatives, and using the definition
(A2) of the Hermite polynomials leads to

2 = ~ by—Z
___TTI/- n) l_bZ)(n k)/ZH"_ ]
&0 la—sne

m a3\’ g\m-i
Xy f")(-—) 2abt k(—)

jé'o(J atl r,=0( l) 3t, =0
Xexp[ — (1 —a®)t? + 2apt,] (A7)

Lmny
1r|/2 z (I’:)(;(")(l __bZ)(n—k)/Z(l __02)(m~k)/2
k=0

ay
X (2ab)*k !Hm_k[m]

by —z
[(1 2)1/2] (AS)

since, on setting ¢, = 0, the only nonzero term in the j sum is
j = k. Thus the k sum runs from zero to the smaller of m or n,
indicated by {m,n].

We can evaluate I [t “m,n;a,b, y,z] =1, by following the
same procedure as above, through Eq. (A6), and using the
standard integral, "’

f t'exp( —t2 4+ 2ut)dt = '/ exp(u®)(2i) ~'H, (iu).

We obtain

a\" ()~
oo () (3.,
=0 3ty ) o\t

XH (iu)A(t,1;) (A9)

=27y ¥ ()
p=0g=0

). (), )
X{l— —_ H
[(312)11=0 at. (=0 ()

—‘9-)";4(‘9)”_,4 t] A10
><[(at2 % (1,,t5) ( )

where

P. J. Drallos and J. M. Wadehra: Harmonic oscillator matrix elements 6529

A(tpt) =exp[ — (1 —a®)t — (1 = b3
+ 2apt, + 2(by — 2)t, + 2abt,1,],

!/‘v

u=at,+bt,+yand i=(-1) (All)

Using Eq. (A6) and

), ), e
23\ H
(BIZ n-o\ot /. -0 (i)

_1afh2i) P e

(I=p—q)!
we obtain the final result:

H, , Uy); p+g<l (A12)

I[t'm,nab,yz]

[mJt] [n!—p)
=3 T (OO
p=0 ¢qg=0
lta?b? .
(20 =79 —p—gq)! Hiop o)
XI{tm—pn—gqgab,yz]. (A12)
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Elastic scattering of positrons and electrons by argon

Sultana N. Nahar and J. M. Wadehra
Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48202
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Differential and integrated cross sections for the elastic scattering of low- and intermediate-energy
(3—300 eV) positrons and electrons by argon atoms are calculated. Higher transport cross sections,
representing moments of 1—(cos8)”, for these systems are also obtained for n =1—4. Model poten-
tials are used to represent the interactions between positrons or electrons and argon atoms. For each
impact energy, the phase shifts of the lower partial waves are obtained exactly by numerical integra-
tion of the radial equation. The Born approximation is used to obtain the contribution of the higher
partial waves to the scattering amplitude. The phase shifts of the seven lowest partial waves are tab-
ulated for various impact energies of positrons and electrons.

1. INTRODUCTION

Since the pioneer work of Ramsauer, ! the study of elec-
tron scattering by noble gases has been of considerable
theoretical and experimental interest. Observations and
calculations of both the total collisional as well as elastic
differential and integrated cross sections for the scattering
of electrons by rare-gas atoms have been made. In partic-
ular, low-energy total collisional cross sections, for elec-
tron- scattering, exhibit a Ramsauer-Townsend (RT)
minimum for Ar, Kr, and Xe. Observations of the
scattering of positrons by rare-gas atoms are relatively re-
cent. “First generation experiments” on positron scatter-
ing included observations of the total collisional cross sec-
tions.2 It was then observed that the scattering of posi-
trons by only the lighter rare-gas atoms He, Ne, and pos-
sibly Ar, exhibited the RT minimum. Thus argon may
play a unique role in exhibiting the RT minimum for the
scaitering of both the electrons and the positrons. With
the advent of high-intensity positron beams, it has now
become feasible to carry out “second generation experi-
ments” for measurements of angular distribution of posi-
trons elastically scattered by rare-gas atoms. The impetus
for the present paper is provided by the recent measure-
ment?® of differential cross sections for elastic scattering of
intermediate-energy positrons by argon atoms. In the
nresent calculations of elastic scattering of electrons and
positrons by argon, an attempt is made to use as similar
(within physical consistency) potential for the two projec-
tiles as is possible.

Elastic and total collisional scattering of electrons by ar-
gon has been given considerable attention, both experi-
mentally as well as theoretically, during the past sixty
years."*~> Webb* has summarized the electron-argon
scattering results prior to 1935. The later experiments on
integrated elastic and total collisional cross sections were
performed by Aberth et al.’ (15—25 eV), Golden and Ban-
del® (0.1-21.6 eV), Kauppila et al.” (1.5-15.7 eV),
Wagenaar and de Heer® (25—750 eV), Wagenaar and de
Heer® (20—100 eV), Kauppila et al.'” (15—800 eV), Nick-
el et al.'' (4—300 eV), Jost et al.'? (0.08—54.423 eV),
Ferch et al." (0.08-20 eV), Charlton et al."* (250 eV),

35

and Gus'kov et al.'® (0.025—1.0 eV). The differential
cross sections (DCS) for the elastic scattering of electrons
by argon have been measured by Mehr'® (5-1000 eV,
20°—155°), Schackert!’ (40—150 eV, 30°—150°), Brom-
berg!® (200—700 eV, 2°—30°), Williams and Willis'
(20—400 eV, 20°—150%), Jansen et al.*® (100—3000 eV,
5°—55°), Lewis et al.?! (15200 eV, 20°—140°), Vuskovi¢
and Kurepa® (60—150 eV, 5°—150°), DuBois and Rudd®’
(20—800 eV, 2°—150°), Gupta and Rees’? (100 eV,
10°—150°), Williams® (0.5-20 eV, 15°—150°), Srivastava
et al.”’ (3—100 eV, 20°—135°), Andrick® (1-20 eV,
0°—180°), Qing et al.?® (10—50 eV, 40°—110°), and Filipo-
vi¢*® (10—100 eV, 20°—150°). From experimental angular
distribution measurements, integrated elastic cross sec-
tions have also been calculated in some cases. Semiempir-
ical cross sections for elastic and inelastic scattering of
electrons from argon in the energy range 20 to 3000 eV
have been obtained by de Heer er al.’ Momentum
transfer cross sections for electron-argon scattering have
been measured or derived from experimental parameters
by McPherson et al.** (0.08—4 V), Golovanivsky and
Kabilan*® (0.005—0.6 eV), and Haddad and O'Malley*
(0—4 eV). Theoretical studies of electron- or positron-
argon scattering are characterized by the method used as
well as by the potential used in the caiculations. Theoreti-
cal calculations for electron scattering by argon have been
performed by Walker® and by Fink and Yates*® using the
relativistic approximation; Thompson,'” Garbaty and La-
Bahr,”® Yau er al.,® and Dasgupta and Bhatia* using
the polarized orbital method; Fon et al.,*' and Rell
et al.*? using the R-matrix method; Pindzola and Kelly,*
Amusia et al.,* McCarthy et al.,*® Joachain er al. "
and Staszewska et al.* using optical model potentials;
Berg et al.*® and Datta et al.™® using model potentials;
Khare and Shobha®' using the first Born approximation:
McEachran and Stauffer’? using adiabatic exchange ap-
proximation; and Haberland et al.>® using Kohn-Sham-
type one-particie theory. Momentum transfer cross sec-
tions for electron-argon scattering are obtained by Frost
and Phelps®* from transport coefficients and by Milloy
et al.”® by a swarm technique.

All measurements of positron scattering by argon have

2051 ‘c. 1987 The American Physical Society

L]
‘-3’5:-:"*}' 7

oA
hd

N
‘l
“
-~




2052 SULTANA N. NAHAR AND J. M. WADEHRA 35

been made in the last decade or so. Measurements of total
collisional cross sections for positron scattering from ar-
gon include those by Canter et al.®® (2—400 eV),
Jaduszliwer and Paul®’ (4—9 eV), Kauppila et al.®
(04—18 eV), Coleman et al.’® (2—960 eV), Griffith
et al.% (30—800 eV), Tsai et al.®! (25—300 eV), Brenton
et al.®* (200—1000 eV), Sinapius et al.®* (1—6 eV), Cole-
man et al.%* (2—50 eV), and Kauppila et al.'® (15—-800
eV). A recent summary of positron-gas scattering is given
by Stein and Kauppila.®® Measurements of the angular
distribution for positron-argon elastic scattering have been
made by Coleman and McNutt® (2.2-8.7 eV, 20°—60°)
and by Hyder et al.® (100—300 eV, 30°—135°). On the
theoretical side, positron-argon scattering calculations
have been carried out by Joachain et al.* and Khare
et al.®’ using optical model potentials; McEachran
et al.%® and McEachran and Stauffer®® using the polarized
orbital method; and Datta et al.’° and Arifov and
Zhuravleva” using a model potential. In the present
study of elastic scattering of low- and intermediate-energy
positrons and electrons from argon atoms, model static
and Buckingham-type polarization potentials for the posi-
tron scattering and the same static (albeit with opposite
sign) and polarization potentials along with an exchange
potential for electron scattering have been used. The re-
sults of the present calculation are compared with the re-
cent experimental observations of positrons and electrons
elastically scattered from argon.

II. THEORY

Consider a projectile of charge e,, with laboratory-
frame impact energy E, being scattered elastically by a
target with central potential ¥(r). The scattering can be
described by the radial part, u;(r), of the /th partial wave
of the wave function which satisfies (in atomic units)

2
—d—z—-l-(l—t—u-FZp[E—V(r)] w(r}=0. (1)

dr r
Here y is the reduced mass of the system. The asymptot-
ic form of the radial part of the wave function is

u)(r) — kr[jj(kr)—(tand;)n;(kr)] , (2)

where k?=2uE. j; and n; are the spherical Bessel func-
tions of the first and the second kind, respectively. (For
their numerical evaluation, see Appendix A.) For posi-
tron and electron impact, u=1. §; is the energy-
dependent phase shift caused by the potential ¥(r). From
the values of the wave function at two adjacent points r
and r +h (h <<r), in the asymptotic domain, one can ex-
tract the phase shift

(r +myuy(r)ji(k (r +h)Y—ruy(r +h)jilkr)
rul(r +hng(kr) = (r +Buy(rng(k (r +h))

tand; = —

3

Various phase shifts are used to obtain the scattering
amplitude as

0

F@== 3 @21+ 1%~ 1)Pcost) , @
2ik [T

where 0 is the scattering angle. Equation (1) is solved by
using the Numerov procedure and the first L phase shifts
are obtained exactly. L depends on the energy of the in-
cident projectile. For large / (> L) the exact phase shifts
5, are approximately equal to the Born phase shifts 8,

explidp)sinby =Ty =—2k [ rLHknVirdr . (5)
0

The typical values of L corresponding to the impact ener-
gies of 3 and 300 eV are 4 and 20, respectively.
The infinite sum in Eq. (4) is then approximated by

L
f(0)=L. 3 (21 + 1)exp(2i8;)— 1 —exp(2i8g )+ 1]
2ik =4

X Pi(cos@)+ [0}, (6)

where f3 is the scattering amplitude in the Born approxi-
mation. For a spherically symmetric potential V (r),

Fa@) == S (2 + Dexp(2i6) — 1]Py(cos6)
2k &

-2 fowrZSl—nq(gL)—V(r)dr, 7

where g =2k sin(@/2) is the momentum transfer. The
differential and the integrated elastic cross sections are

do _ 2

o=lren, ®

or=2r f" do_ sin0do . 9)
0 [dQ

The transport cross sections (including the momentum
transfer, n=1, cross section) are

do

0 sin6dé@ . (10)

o'M=2r foﬂ(l—cos"())

TABLE 1. Range of the values and the value used for the pa-
rameter d (in units of a,) for various impact energies.

d (in units of agy)

E (eV) Range of values Value used
3 1.38—-1.4 1.39
5 1.25—-1.45 1.35
10 1.65—1.8 1.7
15 1.6 —1.8 1.6
20 1.7 =2.75 1.75
30 1.3 —-1.7 1.65
40 1.35-1.7 1.6
50 1.3 =20 1.5
75 1.65-2.35 2.0
100 1.5 =25 2.0
150 1.5 3.0 2.0
200 1.5 -3.0 20
250 1.5 =30 2.0

300 1.7 =30 20

-
o
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. Ze Z
The optical theorem V,(t)= —r"— =S [ (WL, ... rp) ]2
4 i=
or="L1ms(0) an = 1
X —————dr," - drz , (14)
is used as a self-consistent check on the present calcula- |r—r; | : z

tions. In the present calculations of elastic scattering of
electrons and positrons by argon atoms, the potentials
used are

where Z is the nuclear charge of the target atom.
W(r;,...,rz) is the antisymmetrized Hartree-Fock wave
function of the target and is expanded in terms of the

V(r)=V,(r)+¥,(r) for positron impact (127  Slater-type orbitals:
M .
Dy, (r)= 3 AA,p,i)r" P = lexp[ —&(p,i)r] Y, (F)

i=1

=V,(r)+V,(r)+ V(r) for electron impact . {13)

Here V,(r) is the static potential of the target atom, ob- =y, (P Yy (B)
tained by averaging over the motion of the target elec- =P im
trons: with

A, iy=c{A,p,D[25p,DIPO 12/ {20 (p,i) ]} /2 . (15)
The values of ¢(A,p,i), £(p,i), and n (p,i) are taken from the tables of Clementi and Roetti.”' Defining, for convenience,
v=n(p,)+n(p,j), z=Lp,))+&p,j), a=ARp,DARpjW, s=z"""!, m=[1/t+1N-1/tW)}/2"", {16)
where i, j, and t are integers, the static potential for argon atom is given by

N A=l M M s v=2
Vir'=e, 3 3 N3, 3 J aexpl—zr) |+ 3 mr'
A=1p=0  i=lj=I F r=o0

> an

where N is the number of occupied shells in the atom and N, is the number of electrons in the orbital (4,p). V), is tak-
en to be a model polarization potential of the Buckingham type,

Vo(r)=—zar*/(r’+d*), (18)

where a is the static dipole polarizability. d is an energy-dependent adjustable parameter determined by fitting th. calcu-
lated differential and integrated cross sections for the elastic scattering of electrons by argon atoms with the experiment-|
values of the same at a particular energy. The same value of d is then used for positron-argon scattering calculations at
that energy. The values of the parameter d for various impact energies are given in Table I. Khare et al.,*”" who have
used a very similar polarization potential, have expressed the parameter d as a linear function of k in their work. The
exchange potential, V,.(r), for a closed-shell atom is taken to be’

N A—1 172
V(=1 [[E—Vpin]— \[E~Vp(nP+ S 2Nkp\¢lp(r>|2} , (19)

A=1p=0

where Vp is the direct interaction potential, namely, Vp=V;+V,. #3,(r) is the radial part of the Slater-type orbital as
in Eq. (15). V(r) is a shorter range and much weaker potential than the static potential. Hence it is excluded from the
computation of the phase shifts of higher partial waves using the Born approximation. For the polarization potential,
the integral for the /th Born phase shift, Eq. (5), defined by 7,4, is (for its derivation see Appendix B)

Tpp = vak?{ — (2 +3)iy  (kd)k/(kd)+m(2] +3)/(4k*d?)
—[kd +21 + 1021 +3)/(2kd) i) kd)k,(kd) + kdi;  \(kd)k; , \(kd)} , (20

where i; and k; are the modified spherical Bessel functions of the first and the third kind, respectively. (For their nu-
merical evaluation see Appendix A.) The Born amplitude, Eq. (7), for the polarization potential defined abave, is

Sy =ma(3—qd)exp( —qd)/(16d) . (20
For the static potential, the /th Born phase shift, Eq. (5), defined to be T, is (for details sec Appendix C)

N

z°
2k

N A-1 M

e M
Tsm:—fJ 2 ZNAPE Za

A=1p=0 i=lj=I

v-2 dl+|
+ 3=y

41 ! 22
=0 dz

sQ; 1+

1+ =
2k 2

where v, z, g, s, and m are defined in (16). @, is the Legendre function of the second kind. The corresponding Born
scattering amplitude, fp,, is
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For a given impact energy, the polarization potential pro-
vides the major contribution and the static potential a
non-negligible contribution to the phase shifts of higher
partial waves especially for the case of positron impact.
The reason is that due to the opposite nature of the static
and polarization interactions for the positron case, the
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(e, Ar
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T T YT
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(e, Ar), E=10eV
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FIG. 1. Differential cross sections for the elastic scattering of
electrons by argon at various impact energies. Solid lines are the
present theoretical curves. The number in parenthesis following
an energy value indicates the power of ten by which the cross

section values are multiplied. The experimental values are open-

circles, Ref. 27 for 3, 5, 10, and 15 eV and Re. 19 for 20 eV,
closed circles, Ref. 28 for 3, 5, 10, and 15 eV and Ref. 23 for 20
eV.

first part of the scattering amplitude obtained from the
first L exact phase shifts [see Eq. (6)] is smaller for posi-
tron impact than for electron impact and thus the relative
contribution of the Born-approximation part with static
interaction is more significant for positron impact than
for electron impact.

II1. RESULTS AND DISCUSSION

The differential and integrated cross sections for the
elastic scattering of electrons from argon are shown in

10’
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FIG. 2. Same as Fig. 1 eacept the experimental values are
open circles, Ref. 27 for 30 and 56 ¢V and Ref. 19 for 40 oV;
closed circles, Ref. 30 for 30 and 40 ¢V and Ref. 23 for 50 ¢V,
diamonds, Ref. 19 for 30 ¢V,
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FIG. 4. Same as Fig. 1 except the experimental values are
open circles, Ref. 19 for 150, 200, 250, and 300 eV, closed cir-
cles, Ref. 22 for 150 eV, Ref. 23 for 200 eV, and Ref. 20 for 300
eV; diamonds, Ref. 18 for 300 eV.
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10 g o= AN E=100 oV Figs. 1—-4. The single adjustable parameter d in the po-
: P larization potential has been varied, for each impact ener-
[ gy, to fit, as closely as possible, the experimentally ob-
10 L served differential as well as integrated cross sections for
F elastic scattering of electrons from argon. It was noticed
r that a finite range of values of d could be used for such a
3 10 E fitting procedure. Table I gives the range of values of d
S 3 along with the final value of d used for computing the
5 i present cross sections. It is seen by observing the size of
g o' L the range of values of d from Table I that the cross sec-
3 tions are more sensitive to the value of d at lower energies
2 i
O [ | L L 1 ) I B § 1
2 {e™. Arl, E=76 eV o*
2 - fe*, A
£
& 0t 10
: 10" .
10° E
3 10% § .
! . 300ev{13)
-1
10 E 10" .
3 : 2508V{12)
- 0
10" : | L PR T S i 10 E 200eV{11}
O 20 40 60 B0 100 120 140 160 180 N
Scattering Angle (deg) 10 e 1606V(10)
FIG. 3. Same as Fig. 1 except the experimental values are % 3
open circles, Ref. 27 for 75 and 100 eV; closed circles, Ref. 30 b 10’ ¥ ’oo'_vﬂ{
for 75 eV and Ref. 22 for 100 eV; diamonds, Ref. 25 for 100 eV. 8]
§ 76eVi8)
10
23
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FIG. 5. Differential cross sections for the elastic scattering of
positrons by argon at various impact energies. Solid lines are
the present theoretical curves. The number in parentheses fol-
lowing an energy value indicates the power of ten by which the
cross section values are multiplied. The experimental values are
from Ref. 3.
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TABLE II. Differential and integrated cross sections (udsr™!) for elastic scattering of electrons from argon at E=3-300eV.

E (eV) 3 5 10 15 20 30
6 (deg)
0 0.14701] 0.760(1} 0.377[2] 0.602[2] 0.571(2] 0.472(2)
5 0.102[1] 0.608[1] 0.341[2] 0.557{2] 0.523[2] 0.409[2]
10 0.717 0.481[1] 0.300[2] 0.509[2) 0.476[2] 0.359(2]
15 0.560 0.379[1] 0.262[2] 0.455[2] 0.426[2] 0.3122]
20 0.585 0.311[1] 0.224[2] 0.396[2] 0.371[2) 0.267[2]
25 0.742 0.271[1] 0.189[2] 0.335[2] 0.314[2] 0.222[2]
30 0.101[1} 0.257[1] 0.156[2] 0.274[2) 0.256[2] 0.179[2]
35 0.133[1] 0.265[1] 0.127[2] 0.215[2) 0.200[2] 0.138[2]
40 0.170[1] 0.291{1] 0.103[2] 0.161[2) 0.149[2] 0.101[2]
45 0.207[1] 0.330[1] 0.843[1] 0.115[2] 0.104[2] 0.685[1]
50 0.242[1) 0.377[1] 0.699{1] 0.777(1] 0.673(1] 0.422[1]
55 0.272[1] 0.424{1} 0.599[1] 0.496[1] 0.391[1] 0.225[1]
60 0.295(1] 0.466[1] 0.534{1] 0.302{1] 0.196[1] 0.916
65 0.310[1] 0.498[1) 0.491[1] 0.187(1] 0.808 0.198
70 0.315[1] 0.513[1] 0.461(1] 0.134[1] 0.322 0.110[ —1]
75 0.310[1] 0.510(1] 0.433[1] 0.125[1] 0.341 0.238
80 0.295[1] 0.488[1] 0.3971] 0.140[1] 0.686 0.739
85 0.2731] 0.4471] 0.350[1] 0.164[1] 0.118[1] 0.137[1]
90 0.243[1] 0.390[1] 0.290[1] 0.183[1] 0.168[1] 0.198[1]
95 0.208[1] 0.322[1] 0.220[1] 0.187]1] 0.205[1] 0.247[1]
100 0.171{1) 0.248(1] 0.145[1] 0.176[1] 0.224[1] 0.275[1]
105 0.134[1) 0.177(1] 0.771 0.151[1] 0.222[1] 0.279[1]
110 0.990 0.113[1] 0.252 0.121[1] 0.204[1} 0.259[1]
115 0.685 0.643 0.120[ —1] 0.951 0.174[1} 0.219(1]
120 0.446 0.358 0.150 0.864 0.144(1] 0.168(1]
125 0.281 0.311 0.741 0.106[1] 0.122[1] 0.114[1]
130 0.199 0.519 0.182(1] 0.164[1] 0.117[1] 0.663
135 0.197 0.980 0.339(1] 0.264[1] 0.137[1] 0.321
140 0.269 0.166[1] 0.539[1] 0.407[1] 0.185[1] 0.172
145 0.403 0.252[1] 0.773(1] 0.586[1] 0.261(1] 0.234
150 0.581 0.350[1] 0.103[2) 0.793[1] 0.358[1] 0.495
155 0.781 0.451[1] 0.128(2] 0.101[2] 0.469[1] 0.912
160 0.985 0.548[1] 0.152[2] 0.122[2] 0.583[1] 0.141[1]
165 0.117[1] 0.633(1] 0.1732] 0.141[2] 0.688[1] 0.192[1]
170 0.131[1] 0.700(1] 0.190[2] 0.156[2] 0.773[1] 0.236{1]
175 0.141{1] 0.742[1] 0.200[2] 0.166[2] 0.828[1] 0.265[1]
180 0.144[1] 0.755[1] 0.204[2] 0.169[2) 0.847[1] 0.275{1]
a; 0.207[2] 0.393(2] 0.763[2] 0.866(2] 0.728(2] 0.511[2)
E V) 50 75 100 150 200 250
0 (deg)
0 0.488[2] 0.474[2] 0.505[2] 0.555[2] 0.595(2] 0.630[2]
5 0.374[2] 0.332[2] 0.334[2] 0.337[2) 0.341]2) 0.344[2)
10 0.293[2] 0.244[2] 0.232[2] 0.218[2]) 0.208[2] 0.201[2]
15 0.229[2) 0.180[2) 0.161{2] 0.138[2] 0.123[2] 0.111[2]
20 0.177(2] 0.129[2) 0.107[2] 0.824[1] 0.679[1] 0.581[1]
25 0.134[2] 0.896[1] 0.685[1] 0.470[1] 0.363(1] 0.300[1]
30 0.986(1] 0.597[1] 0.419[1] 0.262[1] 0.198[1] 0.166[1]
35 0.699(1] 0.380[1] 0.246[1] 0.149(1] 0.119[1] 0.105[1]
40 0.471[1] 0.228(1] 0.140[1] 0.911 0.809 0.760
45 0.294[1] 0.126[1] 0.789 0.632 0.627 0.605
50 0.162[1] 0.629 0.465 0.508 0.532 0.506
55 0.729 0.290 0.332 0.463 0.476 0.435
60 0.221 0.175 0.324 0.457 0.437 0.378
65 0.516[ —1] 0.228 0.394 0.467 0.404 0.329
70 0.162 0.395 0.504 0.475 0.370 0.283
75 0.475 0.621 0.620 0.470 (.239

0.330

40
0.460[2)
0.373[2]
0.308[2]
0.254[2)
0.208[2]
0.166[2]
0.129[2]
0.955[1]
0.673[1]
0.440[1]
0.257[1]
0.125[13
0.423
0.492[ —1]
0.619[ —1]
0.368
0.859
0.142{1]
0.193[1]
0.231[1]
0.250(1]
0.2471]
0.223[1]
0.183[1]
0.134[1]
0.843
0.412
0.119
0.103[—1]
0.101
0.375
0.791
0.128[1]
0.177{1)
0.219[1)
0.247[1]
0.257[1]

0.396[2]

300

0.661[2]
0.347[2)
0.194[2)
0.102[2]
0.509[1]
0.259[1]
0.147[1)
0.963
0.713
0.564
0.460
0.382
0.319
0.207
0.223
0.183
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TABLE Il. (Continued).

E eV} 50 75 100 150 200 250 300
ca s
80 0.902 0.853 0.713 0.445 0.282 0.195 0.149
85 0.135[1) 0.105[1} 0.760 0.397 0.229 0.154 0.119
9 0.174[1] 0.116[1] 0.749 0.327 0.173 0.117 0.948[ —1]
95 0.199[1] 0.118{1] 0.678 0.244 0.121 0.869[—1]  0.778[—1]
100 0.208[1] 0.109[1] 0.555 0.158 0.769[—1]  0.668(—1]  0.691[—1]
105 0.198[1] 0.921 0.400 0.818[—1]  0485[—1]  0.593[—1]  0.697[—1]
110 0.172[1] 0.693 0.239 0.286[ —1] 0.412[ —1] 0.668[ —1] 0.804[ —1)
115 0.135[1] 0.449 0.103 0.113[—1]  0592[—1] 0904 —1]  0.101
120 0.925 0.238 0.236{ — 1} 0.401[ —1] 0.105 0.131 0.133
125 0.532 0.104 0.263[—1] 0.121 0.180 0.187 0.173
130 0.237 0.869[ —1] 0.130 0.257 0.282 0.257 0.221
135 0.971[ —1] 0.210 0.343 0.444 0.408 0.339 0.276
140 0.145 0.482 0.662 0.676 0.552 0.429 0.334
145 0.387 0.889 0.107{1] 0.939 0.706 0.524 0.395
150 0.799 0.140[1] 0.154{1] 0.122[1] 0.864 0.617 0.454
155 0.133(1] 0.198[1] 0.204[1] 0.150[1] 0.102[1] 0.706 0.509
160 0.192[1] 0.256[1] 0.252[1] 0.176[1] 0.115[1] 0.786 0.558
165 0.249[1] 0.309[1) 0.295[1}) 0.198(1} 0.127[1] 0.853 0.599
170 0.296[1] 0.352[1] 0.329[1] 0.215[1] 0.136{1] 0.903 0.630
175 0.327(1] 0.379(1] 0.35101] 0.226{1] 0.142[1] 0.934 0.649
180 0.338[1] 0.388[1] 0.358[1] 0.230[1] 0.144[1] 0.945 0.655
o 0.333[2] 0.2342] 0.192(2] 0.150[2] 0.128[2] 0.114[2] 0.103(2]

*The notation a[b] means a X 10°.

than at higher energies. The reason possibly is that the
polarization interaction plays a more significant role at
lower energies. It was also noticed that variation of d has
a significant effect on the location of the minima and the
maxima of the DCS curves and on the value of the DCS
at those locations, especially at low energies. Variation of
d also affected the DCS in the forward direction at all en-
ergies. Hence the DCS curves could be moved up and
down near the forward direction by changing the value of
d whereas the shape of the DCS curves at higher angles
stayed about the same.

Within the range of values ot d, shown in Table I for
various electron-impact energies, the computed DCS
curves and the integrated elastic cross sections remain
close to the corresponding experimentally measured
values. The value of d that, in our judgment, gave the
best fitting was used for final computation of differential
and integrated elastic cross sections for the scattering of
both the electrons as well as the positrons. The DCS
curves in the forward direction for positron impact are
inore sensitive to the value of d than the corresponding
curves for electron impact due to the tendency of cancel-
. lation between the static and polarization interactions for
he positrons. The differential cross sections for the elas-
tic scattering of positrons from argon are shown in Fig. S.
Numerical values of the differential and integrated elastic
cross sections for the scattering of electrons and positrons
from argon are provided in Tables II and I1I.

A comparison of the various cross sections calculated
here, for electron scattering, with corresponding measured

values is given in Figs. 1—4 and in Tables IV and V. The
calculated DCS curves for elastic scattering of electrons
from argon are in good agreement with the measured
values of Srivastava et al.,?”’ Andrick,”® DuBois and
Rudd,? and Filipovi¢*® at lower energies (< 50 eV) and
with Vuskovié and Kurepa,?? and DuBois and Rudd?®* at
higher energies (100 < £ <200 eV). However, the agree-
ment with Srivastava et al.?” and Filipovi¢® at larger an-
gles becomes progressively poorer as the electron-impact
energy becomes large. The differential cross sections mea-
sured by Williams and Willis'® are almost always lower
than our calculated cross sections at the minimum points.
The integrated elastic cross sections given in Table IV are
consistent with the available experimental values except
with those of Srivastava et al.?’ which are lower than our
calculated values. The transport cross sections, which
represent the moments of 1—(cos8)”, and which are relat-
ed to the momentum transfer or diffusion cross section
(for n=1), viscosity and thermal conductivity cross sec-
tion (for n=2), etc.,” for both electrons and positrons are
tabulated in Table V. Comparison in Table V of the
present momentum transfer cross sections for the
electron-argon system with the corresponding experimen-
tal values shows reasonable agreement except with the re-
sults of Ref. 27. Phase shifts of the seven lowest partial
waves ([ =0-6) for various impact energics of clectrons
and positrons are presented in Table VI and compare
favorably with the available measured values.

The DCS curves for the elastic scattering of positrons
by argon at various energies are shown in Frg. 5. These
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TABLE III. Differential and integrated cross sections (a} sr—') for elastic scattering of positrons from argon at E =3—300 eV.

E (eV) 3 5 10 15 20 30 40
6 (deg)

0 0.295[1J° 0.335[1] 0.212[1] 0.263[1] 0.239[1] 0.276[1] 0.302[1]
5 0.209(1] 0.210[1] 0.114[1] 0.127[1] 0.134[1] 0.167[1] 0.199[1]
10 0.140{1] 0.122[1] 0.676 0.875 0.135[1] 0.193{1] 0.252[1] -
15 0.795 0.626 0.651 0.983 0.176[1] 0.253[1] 0.325[1]
20 0.441 0.321 0.832 0.1281] 0.220(1] 0.299[1] 0.365[1] .
25 0.220 0.189 0.109(1] 0.160[1] 0.251{1] 0.318[1] 0.364(1] X0
30 0.108 0.183 0.133(1] 0.185[1] 0.263[1] 0.309[1] 0.332[1]
35 0.795[ —1] 0.252 0.153[1] 0.198[1] 0.259[1] 0.281[1] 0.284[1]
40 0.107 0.364 0.165[1] 0.201[1] 0.242[1] 0.244[1] 0.232[1]
45 0.170 0.488 0.171[1] 0.195[1) 0.218[1] 0.204[1] 0.184[1)
50 0.256 0.615 0.170[1] 0.182[1] 0.191{1] 0.167{1] 0.143(1]
55 0.348 0.724 0.165[1] 0.166[1) 0.1641] 0.135[1] 0.112[1]
60 0.445 0.819 0.156[1] 0.148[1] 0.138[1] 0.109[1] 0.888
65 0.536 0.890 0.144[1] 0.131[1] 0.116{1] 0.888 0.722
70 0.617 0.937 0.132[1] 0.114[1] 0.981 0.737 0.605
75 0.689 0.968 0.120[1] 0.990 0.833 0.626 0.523
80 0.747 0.976 0.108[1] 0.861 0.716 0.545 0.464
85 0.796 0.973 0.967 0.753 0.626 0.485 0.419
90 0.830 0.954 0.869 0.665 0.556 0.441 0.384
95 0.855 0.929 0.782 0.594 0.504 0.407 0.355
100 0.870 0.896 0.707 0.538 0.464 0.379 0.330
105 0.877 0.860 0.645 0.493 0.432 0.357 0.309
110 0.879 0.823 0.592 0.459 0.408 0.337 0.289
115 0.873 0.783 0.549 0.432 0.388 0.320 0.272
120 0.865 0.746 0.514 0.411 0.371 0.304 0.257
125 0.853 0.709 0.486 0.394 0.357 0.291 0.244
130 0.841 0.676 0.463 0.381 0.345 0.279 0.232
135 0.826 0.645 0.445 0.370 0.335 0.268 0.222
140 0.812 0.618 0.431 0.361 0.326 0.259 0.213
145 0.799 0.594 0.420 0.354 0.318 0.251 0.206
150 0.785 0.572 0.411 0.348 0.311 0.243 0.200
155 0775 0.557 0.404 0.343 0.305 0.238 0.195
160 0.763 0.541 0.399 0.339 0.300 0.233 0.191
165 0.757 0.531 0.395 0.336 0.297 0.230 0.188
170 0.750 0.523 0.392 0.334 0.294 0.227 0.186
175 0.747 0.518 0.391 0.333 0.293 0.226 0.184
180 0.749 0.520 0.390 0.332 0.292 0.225 0.184
o1 0.842[1] 0.927[1] 0.118[2] 0.113[2] 0.117[2) 0.109[2] 0.104[2)
E (V) 50 75 100 150 200 250 300 A ,;
0 (deg) ::_.. '
0 0.334(1] 0.365[1] 0.426[1] 0.532[1] 0.623[1] 0.704[1] 0.7771] bt
5 0.219[1] 0.493[1] 0.640[1] 0.903(1] 0.113[2] 0.132[2] 0.149[2) Ny
10 0.286[1] 0.653(1] 0.809[1] 0.104[2) 0.119[2) 0.129[2] 0.136[2] -q"f" Al
15 0.364(1] 0.680[1] 0.778[1] 0.875[1] 0.901(1] 0.892[1] 0.865[1]
20 0.396(1] 0.602[1] 0.630[1] 0.618[1] 0.573[1] 0.522[1] 0.473(1] o
25 0.379[1] 0.477[1] 0.459[1] 0.397[1) 0.339[1] 0.292[1) 0.255[1] e
30 0.331[1] 0.352[1) 0.314[1] 0.248(1] 0.202[1] 0.171[1] 0.148[1] 'ri.
35 0.270[1] 0.251{1] 0.211[1] 0.159(1] 0.129[1] 0.110[1] 0.958 I
40 0211[1] 0.177(1] 0.144(1] 0.109[1] 0.894 0.768 0.673 N
45 0.162(1] 0.127(1] 0.104[1] 0.798 0.665 0.571 0.497 :
50 0.123(1] 0.950 0.789 0.620 0.517 0.439 0.377 _
55 0.947 0.746 0.632 0.500 0.411 0.344 0.292 "R::' v
60 0.751 0.612 0.524 0.411 0.333 0.275 0.230 .::.\.,:':f
65 0.616 0.519 0.445 0.343 0.273 0.222 0.184 '.'\':.‘
70 0.524 0.450 0.383 0.289 0.226 0.182 0.150 A
75 0.459 0.395 0.332 0.245 0.190 0.152 0.124 M,

80 0.410 0.350 0.290 0.211 0.161 0.128 0.104 °
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TABLE IIL. (Continued).

E (V) 50 75 100 150 200 250 300
6 (deg)

85 0.372 0.312 0.256 0.183 0.138 0.109 0.886[ —1]
90 0.340 0.280 0.227 0.160 0.120 0.943[ —1] 0.762{ — 1]
95 0.313 0.252 0.202 0.141 0.106 0.824[ 1] 0.664[ —1)
100 0.290 0.229 0.182 0.126 0.937[ — 1] 0.728[ — 1] 0.584[ — 1]
105 0.269 0.209 0.166 0.114 0.839[ —1] 0.649[ — 1] 0.520{ —1]
110 0.250 0.192 0.151 0.103 0.757 —1) 0.584 —1] 0.467[—1]
115 0.234 0.178 0.140 0.944[ —1] 0.690[ —1] 0.530{ — 1] 0.423[ —1]
120 0.220 0.166 0.130 0.871[ —1] 0.633[—1] 0.485[ 1] 0.387[ —1]
125 0.208 0.156 0.121 0.808[ — 1] 0.586[ —1] 0.448[ —1] 0.357[—1]
130 0.197 0.147 0.114 0.756[ —1] 0.546[ —1] 0417 1] 0.332[—1]
135 0.188 0.140 0.108 0.712[ 1] 0.513[ —1] 0.391[ 1] 0.311[—1)
140 0.180 0.133 0.103 0.675[ —1] 0.485[ —1] 0.369[ —1] 0.293[ —1]
145 0.174 0.128 0.982[ —1] 0.644[ —1] 0.462( —1] 0.351[—1] 0.279[ — 1]
150 0.168 0.124 0.946[ —1] 0.619] —1] 0.443[ —1] 0.336[ — 1] 0.267[ —1]
155 0.164 0.120 0.917[—1] 0.598[ —1] 0427 —1] 0.325[~1] 0.258[—1]
160 0.160 0.117 0.894[ —1] 0.582[ — 1] 0.415[ —1] 0.315[ ~1} 0.250[ —1]
165 0.158 0.115 0.877[—1] 0.569[ —1] 0.406[ — 1] 0.308[ —1] 0.245[ 1]
170 0.156 0.114 0.864[ —1] 0.561[ —1] 0.400[ — 1] 0.303{ ~ 1] 0.241[ —1]
175 0.155 0.113 0.857] —1] 0.556[ — 1] 0.396 — 1] 0.300[ — 1] 0.238[—1]
180 0.155 0.113 0.855[ — 1) 0.554[ —1] 0.395[ — 1] 0.299[ ~1] 0.238[ —1]
o 0.973(1] 0.102[2] 0.956{1] 0.861[1] 0.791[1] 0.736[1] 0.690[1]

*The notation a[b] means a X 10%.

curves show a minimum at low energies which shifts to-
ward the forward direction with increasing impact energy.
The increasing depth of this minimum on lowering the
impact energy suggests the existence of the critical point
for the positron-argon system. The critical points
represent the points of minimum scattering, where a small

change in either the incident projectile energy or the
scattering angle is associated with an appreciable increase
in the differential scattering cross section. The low-
energy critical points for various positron-—rare-gas-atom
systems have been predicted by Wadehra et al.” So far
the measurements of the angular distributions of elastic

TABLE IV. Comparison of calculated integrated elastic cross sections (in units of a}) with the ex-

perimental values.

E Present
Projectile (eV) value of o; Experimental value of o,
e~ 3 20.66 20.83(7),® 19.48(12), 17.3(13), 20.64(14),
20.12(26), 19.65(27), 20.51(28)
5 39.31 33.95(7), 32.1(11), 32.59(12), 30.87(13),
36.76(14), 36.09(26), 30.02(27), 34.73(28)
10 76.33 70.75(10), 73.47(11), 74.33(12), 67.54(13),
69.3(14), 83.4(26), 64.32(27), 77.29(28)
15 86.57 85.5(26), 75.04(27), 85.48(28)
20 72.79 71.31(19), 68.4(23), 70.65(26), 44.67(27),
71.18(28)
30 51.08 47.21(19)
40 39.61 32.28(19)
50 33.28 26.48(19), 25.61(23), 21.8(27)
75 23.37 14.29(27)
100 19.21 18.66(19), 16.51(20), 17.33(22), 17.1(23),
18.04(24), 9.29127)
150 15.02 11.86(19), 13.21020), 13.33(22), 14.83(24)
200 12.8 11.51(18), 9.81{19), 10.9(23), 12.68(24)
300 10.32 8.74(18), 7.82(19), 8.81(20), 10.19(24)
et 3 8.42 12.57(56), 9.11(58), 8.56(64)
5 9.27 12.56(55), 10.8(57), 9.68(58), 8.73(64)

*The notation a (b) for experimental values of o, means the measured value of a taken from Ref. b.
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TABLE V. The higher transport cross sections o' (in units of aj) and comparison of o' with the
experimental values.

E Experimental
eV) ¥ Pl momentum transfer, ¢

18.19 19.41 16.72(26)," 14.65(27), 16.08(28)
38.97 32.45(26), 22.87(27), 29.5(28)
66.37 67.65(26), 53.6(27), 62.4(28)
58.57 51.2(26), 53.6(27), 51.28(28)
41.82 33.66(26), 23.58(27), 34.8(28)
26.52 13.22(27)
20.82 15.38
18.05 12.38 15.67
13.40 7.60 11.90
100 7.39 11.03 5.48 9.78
5.24 7.96 3.74 6.95
200 4.26 6.08 2.99 5.22
3.63 4.86 2.53 4.09
300 3.16 4.01 2.19 3.3t
3 6.87 9.02 5.89 9.71
5 7.87 9.39 6.80 9.44
10 9.67 10.40 8.01 8.95
15 8.85 9.33 7.15 7.64
20 8.63 8.92 6.79 7.01
30 7.51 7.62 5.78 5.79
40 6.73 6.73 5.10 5.00
50 6.04 5.98 4.55 4.38
75 5.38 5.19 3.95 3.63
100 4.62 4.40 3.36 2.30
150 3.64 3.40 2.60 2.22
200 3.01 2.77 2.12 1.74
250 2.56 2.33 1.77 1.43
300 222 2.00 1.52 1.20

Projectile th

e~ 3
5 30.45

10 42.15

15 40.84

20 34.83

30 26.18

40 20.20

50 16.12

75 9.98

16.56
34.67
58.97
49.56
33.65
21.33
17.49

15.89
25.98
31.61
28.41
24.44
19.40

8.58(27)
6.7927)
5.72(27)

(]

*The notation a(b) for experimental values of o'’ means the measured value of a taken from Ref. b.

collisional cross sections. Higher transport cross sections
and the lowest seven phase shifts for positron-argon elas-

scattering of positrons by argon have been made only for
a limited range of energies. The only available measured

relative values of differential cross sections of Hyder
et al.’ at energies 100, 200, and 300 eV, have been nor-
malized to the present calculated DCS curves at 90°. In
this energy range, other calculations of elastic cross sec-
tions are those of McEachran and Stauffer® using the po-
larized orbital method and some limited results by
Joachain®’ using the optical model potential. At higher
energies and at larger angles the pre-.nt calculations of
DCS agree with those of McEachran and Stauffer and
with the measurements of Hyder et al. When normalized
separately at 90°, the measurements of Hyder et al. at 300
eV agree well both with the present calculation as well as
with the calculations of Joachain.*’ At low energies and
near the forward scattering direction, where unfortunately
no experimental information for positron-argon elastic
scattering is available, our DCS curves differ significantly
from the calculated results of McEachran and Stauffer. It
would certainly be worthwhile to carry out experiments
on the elastic differential scattering of positrons by argon
in this energy and angular range. For positron energies
smaller than the positronium formation threshold in Ar
(8.96 eV), the integrated elastic cross sections are com-
pared in Table IV with the measured total positron-argon

tic scattering are given in Tables V and VI, respectively.
No comparison of these numbers is possible due to the
lack of measurements of these quantities.

Finally, an attempt was made to obtain the cross sec-
tions for the elastic scattering of ultralow (< 2.5 eV) ener-
gy electrons and positrons by argon. In this energy range,
no experimental numerical values of differential cross sec-
tions for electron impact are available. Thus it was not
possible to obtain the low-energy parameters such as the
scattering length and effective range for the positron-
argon system using the present procedure.

In the present paper we have obtained various cross
sections—differential, integrated, momentum transfer,
etc.—and the corresponding phase shifts for the elastic
scattering of positrons and electrons by argon. These
cross sections compare favorably with the recent measure-
ments of elastic differential scattering of intermediate-
energy positrons by argon. With the anticipation that
similar measurements will be made for other rare-gas tar-
gets in the near future, we are presently calculating the
cross sections for the elastic scattering of low- and
intermediate-energy positrons by He, Ne, K, and X¢ by a
similar procedure.
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TABLE VI. Phase shifts (rad) of the first seven partial waves for elastic scattering of electrons and positrons by argon.

Projectile E (V) 1=0 =1 =2 1=3 =4 =5 =6
e~ 3 —0.490 —0.132 0.130 0.0241 0.0106 0.0057 0.003 46
-0.457 —0.134 0.142 0.021(26)*
-0.548 —0.140 0.125 0.03527)
—0.493 —0.142 0.120 0.025(28)
5 —0.747 —0.272 0.306 0.042 0.0175 0.0094 0.0057
—0.685 —0.205 0.317 0.031(26)
-0.747 —0.256 0.254 0.102(27)
—0.733 —0.277 0.260 0.044(28)
10 —1.283 —0.688 0.751 0.084 0.0321 0.0172 0.0106
—1.098 —0.528 0.936 0.093(26)
—1.243 —0.430 0.805 0.171127)
—-1.143 —0.562 0.840 0.10(28)
15 —1.569 —0.867 1.131 0.140 0.0497 0.0255 0.0156
—1.394 —-0.750 1.451 0.154(26)
—1.365 —0.506 1.593 0.2(27)
—1.443 —0.782 1.39 0.165(28)
20 -1.826 —1.064 1.519 0.186 0.064 0.032 0.0194
—1.653 -0.935 1.747 0.241(26)
—1.818 —0.871 1.679 0.262(27)
—1.683 —0.962 1.670 0.232(28)
30 —2.154 —1.296 1.817 0.306 0.104 0.0496 0.0288
40 —2.40 —1.47 1.929 0.421 0.147 0.0682 0.0386
50 —2.583 —1.595 2.008 0.539 0.196 0.0909 0.0503
75 0.122 1.207 —1.184 0.645 0.250 0.116 0.0622
100 —0.146 1.014 ~1.166 0.773 0.330 0.159 0.0858
150 —0.532 0.735 —1.168 0.929 0.460 0.241 0.135
200 —0.809 0.535 —1.185 1.013 0.552 0.311 0.182
250 —1.027 0.38 —1.207 1.064 0.619 0.368 0.225
300 —1.205 0.253 —1.229 1.096 0.668 0.415 0.263
et 3 —0.334 0.6839 0.0528 0.0219 0.0105 0.00572 0.003 46
5 —0.496 2.0505 0.0703 0.0341 0.0169 0.009 39 0.00572
10 —0.878 —0.139 0.0455 0.0456 0.0278 0.0167 0.0106
15 —1.06 —0.251 0.0173 0.0509 0.0368 0.0235 0.0152
20 —1.245 —0.384 —0.0427 0.0371 0.0378 0.027 0.0185
30 —1.455 —0.545 ~0.126 0.0132 0.0385 0.0335 0.0248
40 1.529 —0.674 —0.206 -2.081 0.0306 0.0354 0.0291
50 1.423 —0.765 —0.267 —0.0506 0.0217 0.C36 0.0326
75 1.115 —1.044 —0.487 —-0.196 —0.0598 —0.0038 0.0154
100 0.907 —1.185 —0.606 —~0.284 —0.115 —0.0344 0.000 64
150 0.789 —1.365 —0.774 —~0.420 —0.214 —0.986 —0.0374
200 0.690 —1.474 —0.884 —~0.519 —0.294 —0.158 —0.778
250 0.631 —1.543 —0.960 -0.593 —0.359 —0.209 —0.116
300 0.596 1.552 —1.015 ~0.651 —0.412

—0.254 —0.151

*Numbers in parentheses denote reference from which the measured phase shift was taken.
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APPENDIX A: GENERATION OF SPHERICAL
BESSEL FUNCTIONS

The standard recursion relations’® can be used for the
generation of the spherical Bessel functions n;(x) and
k,(x) for any value of the argument x and for increasing /

as well as for the generation of j(x) for increasing / and
for argument x > 50. However, due to a nunierical insta-
bility, these recurrence relations cannot be used for the
generation of j;(x) for increasing I if x <50 and for the
generation of i;(x) for increasing [ for any value of the ar-
gument x. In these cases f;(x) and jf;(x) can be evaluated
using hypergeometric function (F,:

y)=Va/2x (x /2R A+ 3x 0/ + 3,
(A
G =VE/2x (x /DM VE S =X /T 43
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The function o, can be evaluated using the rational approximation.’”’ When the argument x of j; is large (> 50), the ra-
tional approximation for oF, becomes unstable.

APPENDIX B: DERIVATION OF PHASE SHIFT FOR POLARIZATION POTENTIAL
IN BORN APPROXIMATION

For the polarization potential, Eq. (18), the Born phase-shift integral Ty, Eq. (5), is defined to be T,5 and is given by

T, =ak fo‘” raRkn) /(r? +d2 dr . : (B1)
After some simplifications, Eq. (B1) can be written as

T,p=ak? [ .7 x50 /e e dx —a? [ x2jx) fixt+a?dx | | (B2)
where ¢ =kd. Using Eq. (6.535) of Ref. 78 and the recurrence relations for the spherical Bessel functions i;(x} and k,(x)
one can derive

fo"’x2j,2(x)/(x2+a2)2dx = —[2ai . (@kla)—m/2a)+ (2] + Vifla)k(a)]/2(a) , (B3)

_ fo‘” x L) /(x2+a?Pdx = —[2ai,, (@ky(@)— 1 /(2a) +(2] + Dij(a)k;(a)] /(8a>)
+{4li)  (@)ky(a)—7l/a*+ij(a)ky(a) /a[2a + 4 + 3 P —21 —1]
—2ai; \(ak; . (a)} /(8a?) . (B4)

Substituting (B3) and (B4) in (B2) and after some simplification Eq. (20} is obtained.

APPENDIX C: DERIVATION OF PHASE SHIFT FOR STATIC POTENTIAL
IN BORN APPROXIMATION

Substituting V,(r) [Eq. (17)], in Eq. (5) and making use of the standard integral’®

[ rexpl—zmjftknidr =(2kH7'Qi[1+22/(2KN)] (cn

where Q; is the Legendre function of the second kind, Eq. (22) is obtained. The argument of the Q; function,
1+ 22/(2k?), is greater than 1 and therefore the recurrence relation cannot be used for the generation of the functions for
increasing I. One convenient way to evaluate a @Q; function is to write it in terms of Gaussian hypergeometric function

Fla,b;c;x) as’®
_ T i+ 1
2T 42y X!

Q,(JC)

FU+1/2,2+1/2;1 4+ 351/xH, x>1 (C2)

where the hypergeometric function can be evaluated by summing the following series:

ab ala+Db(b +1)

ala+1)a42)b(b41)(b +2)x3

Fla,bic;x)=1 2 C3
@hiex) =t Tt elerDxIx2 * T cle+ic +2)X1x243 ()
The higher-order derivatives of Q; with respect to z can be carried out easily using Eq. (C2) and the relation
d" I'a +n)I(b +n)l(c)
Wbieix)= F b +n; %) . 4
—F(a,b;c;x) [ +m)[@)C5) {a +n,b+n;c+n;x) (C4)
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The differential and total cross sections for the formation of positronium in its ground state from
Li and Na atoms by the impact of intermediate-energy positrons are calculated in the first Born and
distorted-wave Born approximations. Hellmann-type pseudopotentials are used to represent the
alkali-metal ion cores. The difference in the use of pseudopotentials and the static potential for the
core representation for evaluating various rearrangement cross sections is discussed.

I. INTRODUCTIUN

There has been a growing interest in the investigation of
electron capture from alkali-metal atom. As an example,
charge-transfer processes with Li have been suggested to
be occurring in plasma diagnostic probes.! Also, alkali-
metal atoms are many-electron systems that can be sim-
plified to be one-electron systems due to a single valence
electron. Theoretical calculations as well as experimental
measurements have been carried out for ionization of and
. electron capture from alkali-metal atoms by proton im-
pact (for some recent works see Refs. 1 and 2). The
charge-transfer’ and the total collisional* cross sections
for positron impact on alkali-metal atoms have been cal-
culated by several authors, and the total collisional cross
sections have been measured for a potassium target by
Stein et al.’> In the present paper, the first Born approxi-
mation (FBA) and the distorted-wave Born approximation
(DWBA) are used to calculate the cross sections for the
ground-state positronium (Ps) formation from lithium and
sodium by the impact of intermediate-energy positrons.
Although the FBA cross sections are calculated and com-
pared both in the post and the prior forms, DWBA cross
sections are calculated, for computational convenience,
only in the post form.

To compare the effects of different potentials (model
potential versus pseudopotential) describing the ion cores,
the first calculation® is done to caiculate the cross sections
for positronium formation from Li in the first Born ap-
proximation by using the static potential for the lithium
ion core. The next calculations, employing FBA and
DWBA, are for the positronium formation in both lithi-
um and sodium using the pseudopotentials. In these cal-
culations the alkali-metal ion cores have been represented
by Hellmann-type pseudopotentials. A significant differ-
ence, in the values as well as in the shape, is observed for
differential cross sections (DCS) in FBA using the pseu-
dopotential and the static potential. A discussion about
the formulation of various potentials representing the ion
cores and the resulting differences in the shape of the
DCS is presented in Secs. II B and III.

II. THEORY

A. Rearrangement cross sections

Let a positron of mass M, with lab impact energy E
and velocity v collide with a target alkali-metal atom at

35

rest and form positronium in the ground state by electron
capture from the target (7). Because of the single valence
electron it is reasonable to treat the alkali-metal atom as a
hydrogenic system by representing the ion core by a cen-
tral potential, ¥,(r), which could either be a pseudopoten-
tial or 2 model potential. Then the initial and the final
channel interactions are

Vilr,,R)=V, (1,)+ V,.r(R)=—e?/r,+ V,(R)
Viler,R)=Vy o (rp)+V, r(R)=V,(rr)+ V,(R)

(1a)
(1b)

respectively. The position vectors are shown in Fig. 1.
The notation used is similar to that of Ref. 7. The in-
teraction between the projectile and the valence electron is
representer’ by V), that between the projectile and the
target ion core is represented by V.7, and that between
the target ion core and the electron is represented by Vp,.
In the present work V,(r) is chosen to be of the Helimann
or Yukawa type:®
2 2
Volry=— eT + Lriexp( —&r)

e Zad

S 2Ar4d 2P A

The parameters A4 and ¢ for the valence electron in lithi-
um and sodium atoms are listed in Ref. 8. a4 and a are
the dipole and the quadrupole polarizability, respectively,
of the alkali-metal ion core. Both the valence electron
and the projectile positron experience the same interaction
with the atomic core except that the signs of the first two
terms of ¥, change in the case of the positron interaction.

2
€(Zq

(2)

ACTIVE ELECTRON

~\

- » T
-—
(POSITRON) R (10N CORE)
FIG. 1. Coordinate system.
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This assumption is believed to be plausible for the follow-
ing reasons. In the case of alkali-metal atoms the single
valence electron is far removed from the alkali-metal ion
core which contains the other tightly bound electrons and,
therefore, the exchange effects in the valence-
electron—ion-core interaction are expected to be small.
Furthermore, the exchange interaction is, in general, a
short-range and much weaker interaction compared to the
static interaction. There are, of course, no exchange ef-
fects in positron—ion-core interactions. Thus, it appears
reasonable to assume that in the energy range being con-
sidered here the valence electron and the incident positron
experience similar interactions, apart from the sign of
some terms, with the alkali-metal ion core. Defining the
quantities

a=Mr/(m +My), B=M,/(m+M,), (3)

where m is the electron mass and Mt is the mass of the
alkali-metal ion core, the various position vectors of Fig. 1
are related as

Rr=R,—(1-8)r,,

rT=R,,+Brp ,

R=Rr+(l—alrr, 4)
R, =BRr+(1—-aB)rr,

r,=—Rzr+arr.

Ry is the position vector of the positron relative to the
center of mass of the alkali-metal atom and R, is that of
the ion core relative to the center of mass of the final
bound state, Ps. The reduced masses are

pur=mMy/im +My)=am ,

pp=mM,/(m +M,)=pm ,

vi=Mpy(m +M7)/(m + My +M,) , (5)
ve=Mr(m +M,)/(m +Mr+M,) .

In the center-of-mass frame, the total energy of the sys-
tem is

E =12k} /(2v)) +&; =k} /(2v ) +e, (6)

where fik; =v;v is the initial relative momentum and fik ;
is the final relative momentum, ¢; is the internal energy of
the (e 4+ T) system, and €, is the internal energy of the fi-
nal bound Ps state. The average momentum transfer vec-
tors are

K=Bkj—k,', J=ak,~—kf . %)}

If W is the exact wave function of the complete sys-
tem in the initial channel with outgoing wave boundary
conditions, then the Schridinger equation satisfied by W
is

o

! et —gwt
~ 20 VRe = g Vit Vit Vi W =BV ®)

which, for the purpose of using the two-potential theory,
can be rewritten as

[HI) +(V,*U,)]\P,+ ::E‘V,»* , {9)
where
Hp=Ho+ Ui+ V5, Hy=— -fffv,il - P o
Vi “ftr

and U; is as vet an arbitrary distortion potential. The dis-
torted wave X', then, is

1

+ gt — U, in
X; d’n E—HD+iE 1'1’1 {
where X;t and v; satisfy
HpX =EX; and (Ho+ Vi W= EWy; . (12)

Similar forms for the different wave functions
(Ve X5, ¥y, elc) can be obtained for the final channel.
Let ¢,(r; ) represent the internal state of (e + T) such that
ﬁZ
_E 2y,

¢,’(l'-1‘)=£,'(b,‘(r[') . (13
2ur

A similar equation could be written for the final internal
state ¢,(r,) of Ps. The initial and final channel wave
functions are then

¥; =explik;'Ry)é;(rp), Yr=expliksR))b,(r,),  (14)

respectively. If X' is chosen, following Ref. 7, to be of
the form

X’f'=¢,~(rr)[exp(ik,--Rr)+g,-+(Rr)] N (15

then it follows from Eq. (11) that

1
.+ . g ) = —_—
&i ¢,(l‘[) E—Hl)+f€

Uty . (16)

Upon operating on both sides of Eq. (16} by (H; —E), us-
ing Eq. (13) and then taking the Fourier transform of the
resulting equation, it is seen that § 1 satisfies

KWKk —in)/(2v)+ U (K —k;)
+2m 2 [gHp UK —pdlp=0. (D

Here the tilde represents the Fourier transform. Similar-
ly, for the final channel, if one writes

Y7 =dp(r,)explik;-R,) +g7 (R,)], (18)

then an integral equation, similar to Eq. (17), can be ob-
tained for g ;. The integral equations can be solved to
first order in the distortion potentials U, and U, to give

21’,’ U,(K_k,)
3 1 g3 . (9
fi- K—ki—in

gHK)=—

and

v, Up(K—kj)
grK)=— =S S A 20)

The specific forms chosen for the distortion potentials are
the static potentials

URp= [ éir) Vi, Ridr,
UsR)= [ 16,00 Ve, R, .

2n

TR, f,
O.o.i“."
O]
Ve g 4
DO
OO
I‘Q gt

4,88
0.. l.. I‘
WY
e,
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Since U; depends only on Ry and U, depends only on
R,, the T-matrix element for the transition from the ini-
tial state to the final state is given by®

T=(X7|V,—Us | ¥}), (22a)

in the post form, and

T=(¥7|Vi-U;|X;j"), (22b)

in the prior form. If the perturbations (V;—U;) and
(Vy—Uy) are weak enough, ¥ and W, can be replaced

by X; and Xy . This approximation is the distorted-wave
Born approximation (DWBA) used here, and the T-
matrix element in this approximation is given by

T=(X;|V,=Us|Xi"), (23a)
in the post form, and
T=X;|Vi—-U;|X}), (23b)

in the prior form. The present DWBA calculations for
the positronium formation from alkali-metal atoms have
been done in the post form only. The T-matrix element in
the post form is

T=T+T,+T;, (24)
where ‘ A
Ty =Y | V,=Us| ),
Ty=yy | Vs—Uslg*e;)
+{grbp | Vi=Up| ) =TF +T5 , (25)
Ty={g7 ¢ V;—Uslgi i) .

Note, on using Eqs. (19) and (20), that T, T, and T are
first, second, and third order in the potential, respectively.
Then keeping consistently terms up to third order in the

potential, the differential cross section is
do viveks 2
£g =Ll 1|2, (26)
dQ |pwpa 4 #'k;

where

27
When distortion is excluded, the first Born approxima-

1 [ _ 4

where

3 3 3 / d[
+ 2 230~ 557
m=1n

i
=11=0 dx

tion is obtained for which

in the post form, and

T=(Ys| Vi), (28b)

in the prior form. The cross sections for positronium for-
mation in FBA have been calculated both in the post and
the prior forms in order to check the accuracy of the trial
wave functions for the valence electron of the alkali-metal
atom. A better trial wave function, obtained by a lower-
ing of the energy in the variational principle, results in a
smaller post-prior discrepancy. The integrated cross sec-
tion for positronium formation

o=2r foﬂ

is evaluated numerically.

Atomic units are used in the present calculations. In
these calculations the pseudopotential, Eq. (2), has been
reduced without losing much accuracy to

Volry=--1/r 4 (A /r)exp( —¢r) (30)

do

40 sindd@ (29)

for computational ease. The parameters A and ¢ for the
valence electron in lithium and sodium atoms are taken
from Ref. 8. It was found that even without the polariza-
tion terms for the ion cores in V,(r) the use of Eg. (30) in
Eq. (13) gives the energy ¢; of the valence electron in the
alkali-metal atom very close to the observed values. The
value of ¢ obtained in the present calculations is
—0.195895 6 a.u. compared to —0.198 1624 a.u.'® for the
2s valence electron of Li and —0.182596 a.u. compared
to —0.1888644 a.u.'® for the 3s valence electron of Na.
The trial wave function for the s-state valence clectron is
expanded in terms of hydrogenic wave functions as

32 .
3i(r)=Yu(®) 3 3 ciyom_or' exp(—=8,r), 31
m=1li=1
where ¢; and §,, are variational parameters. Writing the
distortion potential as
UiRp)= [ |8:(070) | Wt )d rr +V,(Rp),  (32)

where it is assumed that a=1 in the second term, the
Fourier transform of the distortion potential can be writ-
ten as

Omn0=Cim —1C2n _1D24+(Copm _1C2q+ €20 _1€2m)D3+Copmc2,Dy

Omn1=Cam _1C2n 1Dy +2(Cm _1C24 +C2n —1€2m D2+ 3c2mC 2, D5 (33

Qmn2=(Cam —1C2n+CamC2n —1)D + 322D Omn3=ComC2,Dy , x=6,+8,, Di:”/x‘-H'
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The distortion potential in the final channel is
UpR,)= [ |85(r,) [V, (R)+V,(rp)ld’r, . (34

It vanishes when B=7 as in the case of Ps formation.
Hence g, also vanishes. The terms involved in calculat-
ing the cross sections in the post and prior forms of FBA
and in the post form of the DWBA are given in the Ap-

pendix.
B. Pseudopotentials for rearrangement processes

Consider an N-electron open-shell atom with Z valence
electrons. The general distinction between the valence and
the core electrons is that the valence electrons determine
many of the physical and chemical properties of the atom
while the core electrons are relatively inert. Therefore, in
a moderate-energy collision process it is a fairly good ap-
proximation to assume that the valence (or the outer elec-
trons) take part in the interactions while the core electrons
remain essentially inactive. However, for calculational
purposes one needs to know the wave functions of the
valence as well as the core electrons, that is, the total wave
function of the atom which is antisymmetric with respect
to the interchange of any pair of electrons. In the
Hartree-Fock approximation this wave function is an
N X N determinant of one-electron wave functions which
are orthogonal to each other. In order to avoid the com-
plications associated with the orthogonalization of N
one-electron wave functions, one can utilize either a model
or a pseudopotential approach. In the pseudopotential
procedure the problem of N electrons is simplified by
reducing it to a problem of Z electrons by introducing a
repulsive potential ¥ (r) along with the ordinary Coulomb
and exchange potentials for the valence electrons. This
repulsive part represents the partially screened nucleus
and simulates the orthogonality condition or Pauli princi-
ple by keeping the valence electrons out of the core. It
may also contain implicitly the correlation between the
valence and the core electrons which is generally ex-
pressed by the polarization potential. In its general form
the radial part of V(r) can be a Hellmann (or Yukawa)
type, a Gaussian type, or a combination of various short-
range potential terms. The difference between this choice
of the potential for the core and the Hartree-Fock poten-
tial is that in the former case there are no energy eigen-
values corresponding io the core electrons, and the
valence-electron wave functions are nodeless for s elec-
trons, have one node for p electrons, etc. Hence the
lowest Z eigenvalues correspond to the energies of the Z
valence electrons.

The concept of the pseudopotential in atomic, molecu-
lar, nuclear, and condensed-matter physics has been
known for quite a long time. Since the independent intro-
ductions of the pseudopotential, semiempirically by
Hellmann,'! and on the basis of the statistical model of
the atom by Gombas,'? the method of pseudopotential
formulations has been developed by many investigators,'*
and several review articles'* on this subject have been
written. We will concentrate on determining the pseudo-
potential parameters for atoms with a single valence
electron—for example, the alkali-metal atoms. Following

the pseudopotential method as suggested by Hellmann,
the Schrddinger equation for the valence electron (in a.u.)
is

[~ 3V 4V, (Nlblr)=ed(r),
where
Volri=—1/r +(A /rlexp(—&r) (35

is the effective potential for the valence electron. A4 and ¢
are variational parameters, € is the binding energy of the
valence electron, and &(r) is the wave function of the
valence electron, not necessarily orthogonal to the wave
functions of the core electrons. Generally, é(r) is approx-
imated by a trial wave function of the form

o)~ 3 Ry(NY,(®), (36)

mn.l

where the radial part R, (r) contains one or a few terms
{depending on the atomic state it is representing) of hy-
drogenic functions with some adjustable parameters. The
parameters .4 and & of the pseudopotential and the adjust-
able parameters of the wave function R,; are varied until
the lowest few eigenvalues, obtained using the Ritz varia-
tional principle, agree as well as possible with the ob-
served energies of the ground and the first few excited
states. This procecure for determining the potential can
fail since on increasing the number of terms in the expan-
sion for R, (r), the energy eigenvalues £ of Eq. (35) con-
tinue to decrease and eventually can become much lower
than the experimental values.

The alternate way to determine the values of the pseu-
dopotential parameters is to solve Eq. (35) by direct nu-
merical integration using the Numerov method. The radi-
al part of the bound state ¢(r) behaves as

Ry(r)~r' for r—0,
— (37
Ry (r)~exp( —VFr)/r forr—c ,

where F =2(V, —¢). Using the conditions of Eq. (37), the
outward and the inward radial wave functions are gen-
erated and matched at a suitable matching radius. The
first Kato cusp condition'® can be used to start the out-
ward function near the origin. The parameters 4 and ¢
are varied until both the wave function and its derivative
become continuous at the matching point. For a fixed en-
ergy € of the valence electron a number of sets of parame-
ter values may be obtained which will generate a smooth

wave function for the ground state. Only that set of pa-

rameters is to be chosen which will reproduce as closely as
possible a few low-lying energy levels of the same symme-
try. In Ref. 8, from which the present values of 4 and ¢
for the valence electron in Li and Na are taken, the pa-
rameters were chosen so that the lowest two energy levels
were reproduced exactly. It is to be noted that a wave
function which closely reproduces an energy etgenvalue
may not necessarily generate expectation values of various
powers of r which would agree with the previously known
values'® of these matrix elements. It is then possible that
the transition matrix elements relevant to collisional pro-
cesses could be affected which, in turn, would affect the
related cross sections.
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To illustrate the use of different potentials, the cross
sections for positronium formation from Li by the impact
of positrons have been calculated® using the static poten-
tial of the Li* core in the FBA. The static potential ex-
perienced by the valence electron is obtained by averaging
the instantaneous interaction over the motion of the core
electrons:

Vi(r)= f | d(r,,r,) | ?

1 1
-——+ +
ro o fren|  ren|

X drldrz . (38)

®(r),r;) is the antisymmetric Hartree-Fock wave function
of Lit in terms of one-electron Slater-type orbitals given
by Clementi and Roetti.”” Since it is determined by the
exact interaction and the Hartree-Fock functions, the stat-
ic potential can be considered a model potential and not a
pseudopotential. Unlike a pseudopotential, a model po-
tential has bound states which may not correspond in en-
ergy to the observable states of the atom. Hence the
lowest energy eigenvalue of the model Hamiltonian may
not necessarily correspond to the energy of the valence
electron. However, the wave function of the valence elec-
tron has the correct number of nodes, namely, n —/ —1.
The ditference between the pseudopotential and the
model-potential approaches has been discussed and ela-
borated on by Peach.!® A six-term trial wave function for
the 25 valence electron of the Li atom, similar to Eq. (31),
which corresponds to an energy value of —0.175867 a.u.
for the valence electron (that is, the second lowest eigen-
value of the Hamiltonian) in the static potential V(r) of
Li*, is used for the calculations of the cross sections for
positronium formation in FBA. The differential cross
sections are shown in Fig. 2, and the integrated cross sec-
tions are given in Table I.

ITI. RESULTS AND DISCUSSION

The differential cross sections (DCS), using the FBA,
for the formation of positronium at positron impact ener-
gies of 100 and 200 eV from Li are shown in Fig. 2, and
the integrated cross sections are presented in Table I. In
these calculations, a static potential has been used to
represent the alkali-metal ion core. The DCS and the in-

wem

o' +Li(28) —+ Ps(is)+Li*

A

{with static potential)

dedddddddl,

1006V (FBA}

FosTin|

i

200eV (FBA)

Adiail

PR ETITI EY

Differentia! Cross Section (a2/sr)
]

Aodoi il

U B A o _— et ) L
0 20 40 80 80 100 .20 140 160 180
Scattering Angle (deg)
FIG. 2. Differential cross sections for the positronium for-
mation from Li at positron impact energies of 100 and 200 eV
using FBA.

tegrated cross sections using both the FBA and the
DWBA for the formation of positronium from Li and Na
using pseudopotentials for the representation of the
alkali-metal ion cores are also calculated. These DCS
values for a Li target at positron impact energies of 100
and 300 eV are shown in Fig. 3, and for a Na target at
positron impact energies of 75, 200, and 300 eV are shown
in Fig. 4. The corresponding integrated cross sections are
provided in Table I. In order to obtain the energy values
and the wave function parameters for the valence electron
of the alkali-metal atoms in Eq. (13), the variational prin-
ciple as well as direct numerical integration using the
Numerov method is used. The post-prior discrepancy for
both the DCS and the integrated cross sections in the
FBA is negligibly small in all cases. Hence only the post
results in FBA are shown in Figs. 2—4. Some differences
in the values of the cross sections, using the pseudopot=n-

TABLE 1. The integrated cross sections using FBA (oppa) and DWBA (opwia) for Pstls) forma-
tion from Li and Na by the impact of positrons. The notations p and s following the target atom corre-
spond to the use of pseudopotential and stutic potential, respectively. Numerical values of the form

a[b] mean a X 10°.

Target Positron impact arpa (units of ad) Opwea (units of ai)
atom energy (eV) Post Prior Post
Li(p) 100 8.4317[—2] 8.430[ —2] 2.8105[ - 1]

300 1.8319{ 3] 1.8334[— 3] 2.25465[—3)
Na(p) 75 3.5692 3.5676 1.3882[2])

200 1.7259{ 1] 1.7271[-1] 3.7385

300 1.1783[ 2] 1.1775[ 2] 1.8342(—1]
Li(s) 50 6.3872[—2] 6.4361[—2]

100 1.9632[ —2} 1.9704[ - 2]

200 2.5137[— 3] 2.5023[ !
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10’

o' +Li(28) + Psl1s)+Li*

A4 21 1ld

10’ {with pseudopotential)

o Jdaaiul

100eV _(DWBA)
10*

PEEWWETIVIA |

..., 1006V (FBA)

T oo

Aed i b it

Differential Cross Section (s 2/sr)

L2 - 3006V (DWBA)+
E e 300eV (FBA)
10.' 1 L 1 N o T L4 """""

0O 20 40 60 80 100 120 140 160 180
Scattering Angle (deg)
FIG. 3. Differential cross sections for the positronium for-

mation from Li at positron energies of 100 and 300 eV using
both the FBA and the DWBA.

tial and the static potential, are expected since the two po-
tentials representing the Li* core do not correspond ex-
actly to the same energy eigenvalue for the 2s valence
electron. This difference is obvious in the values of Table
I. Not only the values but also the shapes of the
differential-cross-section curves, as shown in Figs. 2 and
3, are different. While with the static potential the DCS
curves show a sharp minimum that moves toward the for-

10 |

e'+Na(3s) - Ps(1s)}+Na*
{with pseudopotential)

il

A

a

766V (DWBA)

A aaihl

3

76eV (FBA)

200eV (DWBA}

3006V (DWBA)3

Ditferential Cross Section (a,2/sr)
3

A A
0 20 40 60 80 100 120 40 160 180
Scattering Angle (deg)

FIG. 4. Differential cross sections for the positronium for-
mation from Na at positron impact energies of 75, 200, and 300
eV using both the FBA and the DWBA.

ward direction with increasing impact energy, with the
pseudopotential these curves show a maximum, prominent
at lower energies, near the forward direction. The total
positron-atom interaction potential has both an attractive
and a repulsive part. In the calculation employing the
static potential, the contribution to the scattering ampli-
tude arising from the repulsive part of the interaction al-
most equals that from the attractive part for a certain an-
gle which resuits in a minimum in the DCS curve. This
angle depends on thc positron impact energy. This
minimum in the DCS curve has also been obtained by
Guha and Saha’ (using FBA) and Mazumdar and Ghosh*
(using FBA and the distorted-wave polarized orbital
method). Guha and Saha have used a core model poten-
tial different from the one used here and their results
(evaluated in the post form) for the positronium forma-
tion cross sections are much lower than the present re-
sults. Mazumdar and Ghosh® have used only the static
potential for the Li* ion core. Their calculated positroni-
um formation cross section at 5S0-eV impact energy, using
FBA, is comparable with the present result but their cross
section at 100-eV impact energy is lower than the present
one.

In the present calculations it is noticed that the contri-
bution from the positron—ion-core interaction to the DCS
values dominates at larger angles in all cases. Also in the
present calculations, using the pseudopotential in DWBA,
it is seen that the distortion contributes significantly to
the positronium formation cross sections, especially for
the Na target. No measured values for the corresponding
cross seclivus with Li and Na targets are available at this
moment, but such measurements may be feasiblc in the fu-
ture.'” Only when the experimental results become avail-
able in the future can a better justification for the use of
different potentials be made. In spite of the availability of
good wave functions containing the  Slater-
type orbitals'” of alkali-meta) atoms, the static potential
formed by these wave functions does not provide the ener-
gy of the valence electron to a very good approximation.
[See the ecnergy values following Egs. (30) and (38).]
Furthermore, the form of these wave functions (having
many terms) makes them computationally inconvenient
for the evaluation of capture cross sections. In this
respect the pseudopotentials are simpler to use, and the
energy eigenvalues corresponding to these potentials can
be made very close to the measured energy values of the
alkali-metal atoms using adjustable parameters.

It is to be noted that, even though the model static po-
tential and the pseudopotential do not reproduce the
alkali-metal spectrum to the same degree of accuracy, a
comparison between the positronium formation cross sec-
tions using these two potentials is still worthwhile. In the
absence of any experimental information about cross sec-
tions for positronium formation in alkali-metal atoms, we
can compare only with .. previvus theoretical results for
these cross sections. The majority of these calculations®
exhibited features in the positronium formation cross sec-
tions which were similar to the ones observed in Fig. 2 for
the Ps formation in Li using the model static potential.
We note that this potential did not reproduce the energies
of the alkali-metal ground states very well. On the other
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hand, use of the pseudopotential, which reproduces the
energies of the alkali-metal ground states quite well, in the
present calculations provides Ps formation cross sections
which differ markedly in shapes and magnitudes from the
previous calculations.

In the present calculations terms up to third order in
the potential are kept in the cross-section expression with
the assumption that the higher-order terms contribute less
significantly. The cross-section integrals are simplified by
the fact that the positron mass is much smaller than that
of the alkali-metal ions (a=1). Several checks were made
to ensure the correctness of the present computer codes.

(a) Both the FBA and DWBA cross sections for the
process et + H(ls)—Ps(ls)+H™ at a positron impact
energy of 100 ¢V (Ref. 7) were reproduced.

(b) The DCS values in FBA for the process
et + H(ls)—Ps(1s)+H™ at a positron impact energy of
500 eV (Ref. 20) were reproduced.

() The DCS values in FBA for the process
H* + H(ls)>H(1s)+H™ at a proton impact energy of
700 keV (Ref. 20) were reproduced.

(d) The DCS values in FBA for the process
H* + H(ls)—»H(1s)+H* at a proton impact energy of
198.344 keV (Ref. 21) were reproduced.

(e) An attempt to reproduce the DCS values in FBA for
the process e* + Li(2s)—Ps(1s)+Li*, as reported by
Guha and co-workers,® did not meet with success. A
small computer program which specifically made use of
the wave function and potential of Guha et al. was writ-
ten. This program reproduced the same values of the dif-
ferential cross section as given by our general program.

Finally, we comment on two aspects of the present cal-
culations for positronium formation from alkali-metal
atoms. First, the shapes of the differential cross sections
for positronium formation depend on the type of interac-
tion potential used in the calculations. This is obvious on
comparing Figs. 2 and 3. It is not yet possit!z to ascertain
the correctness of either shape due to the absence of corre-
sponding experimental cross sections. The second remark
concerns the significant difference in the values of the
cross sections, both differential and integrated, obtained
by using the FBA and the DWBA. A rather large differ-
ence between the two values seems to suggest that the
higher-order distortion terms in the DWBA may contri-
bute significantly to the cross sections. The importance of

J

1 1 1
1 - d3 ’
1 f p(p-A)2+aZ (p—B}Z-f-bZ p2+22
i 1
)2+a2]2 p2+22 !
I 1

I,= | d*
o f p[(p+A

including these terms can only be determined when the
experimentally measured values of the cross sections for
positronium formation become available.
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APPENDIX

In this appendix we present analytical forms for various
terms in the cross sections for positronium formation.
Note that U, vanishes for the positronium formation.
Various parts of the post form 7-matrix elements, Eq.
(25), using DWBA can be written as

T,=N,+N,, (A1)
where
Ni=—m*2 [ $HK -0V, (08,(~t—Dd, (A2
Ny =2mY% 5K [V, (08, —t-Dd't (A3)
T =L,+L,, (A4)
where
Li=~ [ 6}~t—q+Pk,)V,(LE (q)
Xb;( —t—aq+kold'td’q, (AS)
Ly= [ }(—q+Bk,)V,(0F (q)
Xéi(—t—q+ksd tdq . (A6)

In evaluating L,, is it assumed that ¢=1. T, and T,
vanish because of the vanishing of g/ . In the prior form
of FBA, the T-matrix element (Eq. 28) is given by

T =N| +N; y (A7)
where N, is same as in Eq. (A2) and
Ni=—Q2m) K2/ u,) —e,16 3 KIS (=) . (A8)

In the post form of FBA, the T-matrix element of Eq.
(28) is essentially T, of Eq. (Al). The integrals involved
in evaluating these terms are of the form

(A9)

(A10)

1 1

1
I = dJ d3 k] ’
2 f f P q(p_A)2+a2 (p_B)2+b2 pZ_UZ_i,'I [(p+q—D)2+d2]2 q-_+_z.7.

1 1

(AlD

1 1

L= [ [dpd’q

I, is integrated analytically and is given by
LA B

a A’+(a+2?

Using a Feynman identity, as in Ref. 7, the other integrals

I,= (A13)

(p+q—A)P+a? (p+q—BiP+b? pl4c? (q—DV+d? g*—viein

I

are reduced as follows:
1] =77'2 dx _“-.,_]\’ y
O E[F'+(E +2))

where
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El=x(1—x)(A=B)?+xa%+(1—x)b?,

F=(A-B)x +B, (A14)
B L [l |5 T |

where
El=x(1—x(A—D)y+xa’+(1—x)d +2)?,
F=(A-Dix +D,
si=y(1—yF—BY+yE*+(1—y)b?, (A1S)

T=—v2=2ivs +y(E 4+ F)+(1—y)b*+BY),

1 1 1
I = dx d ’
’ ﬁfo fo yEs[Tz-i-(s —iv)*]
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where
E’=x(1-x{A—=BP+4xa’+(1—x)b*>.

F=x(A—-B)'+B,

, ] . . (A16)
5=yl —yXF—D)+y(E +c)r-+(1—-yid-,

T=yF+(l—y)D.

Now the integrals are evaluated numerically. The one-
dimensional integrals have been integrated using
Simpson's rule, and the two-dimensional integrals are
evaluated using a 9-point square formula®’ with an error
proportional to the sixth power of tlie stepsize.

'R. D. DuBois and L. H. Toburen, Phys. Rev. A 31, 3603
(1985).

IW. Fritsch and C. D. Lin, J. Phys. B 16, 1595 (1983); W.
Fritsch, Phys. Rev. A 30, 1135 (1984).

3S. Guha and B. C. Saha, Phys. Rev. A 21, 564 {1980); S. Guha
and P. Mandal J. Phys. B 13, 1919 (1980); P. Mandal and S.
Gubha, ibid. 13, 1937 (1980); S. Guha and A. S. Ghosh, Phys.
Rev. A 23, 743 (1981); P. S. Mazumdar and A. S. Ghosh,
ibid. 34, 4433 (1986).

4S. P. Khare and Vijayshri, J. Phys. B 16, 3621 (1983).

5T. S. Stein, R. D. Gomez, Y.-F. Hsieh, W. E. Kauppila, C. K.
Kwan, and Y. J. Wan, Phys. Rev. Lett. 55, 488 (1985).

6S. N. Nahar and J. M. Wadehra, in Positron Annihilation, edit-
ed by P. C. Jain, R. M. Singru, and K. P. Gopinathan (World
Scientific, Singapore, 1985), p. 413.

7R. Shakeshaft and J. M. Wadehra, Phys. Rev. A 22, 968
(1980).

8J. N. Bardsley, Chem. Phys. Lett. 7, 517 (1970).

9See, for example, C. J. Joachain, Quantum Collision Theory
(North-Holland, Amsterdam, 1975), p. 449.

10R. D. Cowan, The Theory of Atomic Structure and Spectra

(University of California Press, Berkeley, 1981).

ITH. Hellmann, J. Chem. Phys. 3, 61 (1935).

1ZP. Gombas, Z. Phys. 118, 164 (1941); 94, 473 (1935},

133. C. Phillips, Phys. Rev. 112, 685 (1958); J. C. Phillips and L.
Kleinmann, ibid. 116, 287 (1959); 118, 1153 (1960); L. Szasz
and G. McGinn, J. Chem. Phys. 42, 2363 (1965).

143, D. Weeks, A. Hazi, and S. A. Rice, Adv. Chem. Phys. 16,
283 (1969); J. N. Bardsley, Case Stud. At. Phys. 4, 299 (1974).

ISN. H. March, Phys. Rev. A 33, 88 (1986).

16R. J. Boyd, Can. J. Phys. 55, 452 (1977).

Y7E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14,
177 (1974).

!8G. Peach, Comments At. Mol. Phys. 11, 101 (1982).

19T, S. Stein and W. E. Kauppila (private communication).

20J. C. Y. Chen and P. J. Kramer, Phys. Rev. A 5, 1207 (1972).

2ID. R. Bates and A. Dalgarno, Proc. Phys. Soc. London, Sect.
A 66,972 (1953).

2Sec, for example, Handbook of Mathematical Functions, edit-
ed by M. Abramowitz and I. A. Stegun (Dover. New York,
1972, p. 892.

g

L)

N

AN
L 4

‘z;.""'

!
c'l:::l::g

b

g W

v
|.<
::yh !
et
. (]
o:..l ",

W)
o'.:.i":‘o:‘,
iy

ATy
B

ke x %}
b Iy “l
.' N L
X
VN LA ]
Iy O




w %

T e

R S R A I

PHYSICAL REVIEW A

VOLUME 36, NUMBER 3

AUGUST 1, 1987

Simple model for the resonant vibrational excitation of molecules
and its application to Li> and N,

J. M. Wadehra and P. J. Drallos
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A simple model for the resonant vibrational excitation of a molecule by electron impact is pro-
posed in which the potential curves of the electronic states of the molecule and its resonant anion are
replaced by those of linear harmonic oscillators of arbitrary frequencies and equilibrium internuclear
separations. A closed-form expression for the excitation amplitude is derived. Useful recursion rela-
tions among amplitudes are obtained which allow convenient evaluation of cross sections for any in-
elastic or superelastic vibrational transition. The model is used to generate the cross sections for vi-
brational excitation of Li; and N; by the impact of low-energy electrons.

I. INTRODUCTION

It has been well established that the phenomenon of vi-
brational excitation of a molecule by electron impact is
dominated by resonance formation.! The direct (or non-
resonant) contribution, which is quite important for the
elastic scattering of electrons by a molecule, to the vibra-
tional cacitation is usually small. For exaniple, the spec-
tacular peaks in the cross sections for vibrational excita-
tion of molecular nitrogen can be satisfactorily reproduced
only by using a proper resonance model.> The purpose of
this paper is to present a closed-form expression for the
resonant contribution to the amplitude for vibrational ex-
citation of a molecule by electron impact using a simple
model. Furthermore, some useful recursion relations
among the excitation amplitudes will be obtained which
will permit a rapid evaluation of the resonant contribution
to the cross sections for any inelastic or superelastic vibra-
tional transition in a molecule.

In the model that we are proposing here, the potential
curves of the electronic state of the molecule and of the
resonant anion state are replaced by those of two simple
harmonic oscillators of arbitrary frequencies, curvatures,
and equilibrium internuclear separations. Moreover, the
two oscillators have arbitrary energy separation. A simi-
lar (but not identical) model has been used in the past by
other investigators** for vibrational excitation of a mole-
cule by an electron. In these previous investigations the
two linear harmonic oscillators were taken to have the
same frequency. Also, a simple recursion relation among
excitation amplitudes was obtained previously* and was
valid only for the inelastic transitions. The results in the
present paper represent a generalization of the previous
results and indeed reduce to those previous results for the
case of equal trequency oscillators.

Finally, the results of the present paper are used to ob-
tain the cross sections for vibrational excitation of Li, and
N3 by electron impact. The model can successfully gen-
J

Alm—n;e)=—B3 (n|[[(R)/27]'[E, + AR)—iT(R)/2—E] '[v) (v

36

erate the experimentally observed® peaks in the cross sec-
tions for nitrogen and predicts the excitation cross sec-
tions for lithium dimers.

II. VIBRATIONAL EXCITATION AMPLITUDE

In the process of vibrational excitation, a molecule A8,
initially in the vibrational level m, undergoes a transition
under the impact of an electron of energy €=#k>/2m,,
to the final vibrational level n, leaving behind an electron
with energy e, =#°k}?/2m,. This process,

elkj)+ AB(m)— AB ~—elks)+ AB(n},

proceeds via the formation of an intermediate resonant
state AB~, whose nuclear wave function &(R), in the
local-width approximation, satisfies' (in atomic units),

[Ty+V ™~ +AR)—i[(R)/2—EJER)
=—[F/Q2m]" X (R) . (D

Here, V7 (R) is the real part of the potential curve of the
anion state AB~. A(R) and I'(R) are, respectively, the
level shift and the resonance width. T is the nuclear ki-
netic energy, and X,,(R) is the nuclear wave function of
the initial rotationless vibrational level of AB. E is the to-
tal energy of the system, that is, E =¢ + E,,, E,, being the
initial vibrational energy of the target molecule. If Y, (R}
is the wave function of the final vibrational level of the
molecule, the amplitude for vibrational excitation via reso-
nance formation is'

Alm—n;e)=B{(n | [T(R)/(2m]'* &R)) , 2

where B = —4m?/(k;k;)!/2. For brevity, we are using the
bra and ket notation to denote the various vibrational
wave functions of the molecule, namely, ¥, (R)={(R :m)
and X,(R)=(R|n). Using Eq. (1) and introducing a
complete set of vibrational wave functions R  v)) of the
anion state, the transition amplitude can be written as

[T(RY27) m) (3)
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where the sum over v includes integration over the contin-
uum nuclear functions of the resonant anion electronic
state. E, is the energy of the vth vibrational level of the
anion. In what follows, wec will consistently use the dou-
blet ket notation (such as |v)}) to denote the vibrational
wave functions of the resonant state and a single ket nota-
tion (such as |m) or |n)) to denote the vibrational wave
functions of the neutral target state. Now, if the width "
and the level shift A, which in general are energy depen-
dent, are taken to be independent of the internuclear sepa-
ration R and energy &, then Eq. (3) can be written as

r2 ‘”2 (n [vD{v]m)
kiks “ E—E,+il/2—A ~
4)
Note that (n|v) and (v|m) are essentially the
Franck-Condon overlap integrals between the vibrational
levels of the initial electronic state of the target and those
of the resonant anion state.

Now we introduce a simple model in which the poten-
tial curves of the initial electronic state of the target and
the resonant anion state are taken to be those of simple
linear harmonic oscillators of frequencies » and w_, re-
spectively. r is the separation between the equilibrium in-
ternuclear positions of the two oscillators. Figure 1 shows
the two potential curves and their relative geometry. The
overlap integrals, along with useful recursion relations, be-
tween vibrational levels of two off-center linear harmonic
oscillators of different frequencies have been worked out
in detail.® For the case of linear oscillators, Eq. (4) for the
vibrational transition amplitude becomes
12

Am—n;e)= 27

2r | I? .
A(m—»n,a)_—w_ P alm—n;e), (5a)
where
& {(n|vI{v|m)
alm-—n;e)= Sn|vIQvim) (5b)
\Eo Q-—v

and Q=[e—8E +mo+{w—w_)/2—A+iT/2}/w_.
SE is defined in Fig. 1. Either one of the two overlap in-

Potentisi Energy

internuclesr Separation
FIG. 1. Schematic representation of the potential energy
curves of the molecule AB and its resonant anion AB ~ by linear
harmonic oscillators.

tegrals appearing in Eq. (5b) can be written in a closed
form as a finite sum.® Evaluation of a (m —n ;) will then
involve two finite sums and an infinite sum. As we will
show now, a (m —n;e) can be alternatively obtained, us-
ing the recursion relations which will be derived below,
from the mere knowledge of a (0—0;¢) and a(0—1;€).
Furthermore, a (0—0;¢) and a (0— 1;¢) can each be writ-
ten as simple one-dimensional integrals which can be eval-
uated rapidly on a computer for any electron impact ener-
gy €. To begin with, we define a few convenient relations:

O—w_
T ot wo="%/(ur?), a*=wo’ /[ofe’ —o?)],
B*=0o_/[wle®*—w)], (6)

where p is the reduced mass of the nuclei in the molecule
AB. Now the Franck-Condon overlap integral (m |v)),
using the two-center harmonic oscillator wave functions,
: 6
is

i
[m,v] |m v
(m [vI=NQ"+*m)~ 12 3 || [P =y ) =R~y R, i (@)H,_(—B12% 7
k=0
where "
N— 2Aww_)? ’ — o _
| ot P | 2glo+o_) |’

H,, are the Hermite polynomials and [m,v] denotes the smaller of the two integers m and v. Substituting Eq. (7) into

Eq. (5) and interchanging the order of the sums, one obtains

. m
a(m—n;e)=NQ2"+"min))~'2 3

k=0 k

n
/

n
P>
=0

X 2
v= 1k

m
,y—k/Z( _,y)lm -k)/Z(l__y2)k/2k !ZkH,,, _ila)

,y——l/Z(_,y)(n-[)/Z(l_,}/2)1/21!2[’1"_1((1)

v

1 |P2WQ =) H (=BH (=), (8)
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where {k,/} denotes the larger of the two integers k and I. Using Eq (A4), a (m —n ;&) can be written as

m y__k/z(__,y)(m —")/2(1—7/2)"/2Hm _rla)

m
a(m—n;e)=N(2"+*"min)~'* 3

k=0 k
k 1
e é n ,y—l/Z(_,y)(n—I)/Z(l_.yZ)l/ZH"_[(a) i —a— AOO(X y) s
1=0 ! dx =-8 dy y=-B
9)
where (
= y'H,(x)Hy)
dplxy)= 3 T2V (10)
o 2W(Q —v)
On using the integral representation,
[ expli(@ —vitldt =———, ImQ >0 an
0 Qv
and the bilinear generating function for the Hermite polynomials, Eq. (A3), Ag(x,y) can be rewritten as
. e drz9%! y2x2—2xyz /v +y%)
Ago(x,y)=—1i fo (zz—yz)'/z exp gt . (12)

Here, for convenience, we have introduced z =exp(it). Now the derivatives in Eq. (9) can be carried out explicitly and
using Eqs. {12) and (A2), we find

al* {a] dt 22+ 28y
9 9 A \ - i o
3% s 3 s oo(x,p) 'fo (22_72)1/2“]’ P
e (k| {11 292 ' y k+l-2
X !
p§0 D P 22_,},2 (22—‘}’2)”2
172 122
@2 |2z=% g2 12 =Y 13
XHi_p B o }Hl_,,‘ [B " ' 13)
Substituting from Eq. (13) into Eq. (9) and interchanging the sums again, one obtains
Q+1 2 {m,n] P
a(m—»n;e):-—iN2(2’"+"m!n!)"’zf°° itz 77 €XP By —%E- p!
0o (22—yHV z+y | S | 2277
m Im| |k 1— 2 k72 k—p 12
m—ki2 | 1=% Y 2 |2V
- H, _ H,_, 1~
ngp ko)=Y [ 14 m-k(a) (22—72)'/2] ) p[ lB z+y ]
n |n 1 1 2 in I-p 12
_ya=nn2{l=v H Yy H _ (g |F=L 4
Xlgp 1 |p (—7v) ‘ " ] n_ila) (22_72)1/2 1_pl B z+y . (14)
Finally, using Eq. (A5) twice to carry out the k and / sums and then applying Eq. (A6), the final result is obtained:
172
—iBN? r? tma} im (|7
€)= 12r
Alm—n;g) 207 | 2 it R pllp P
(m+n-~-2p)/2
fan drz9+! exp 2By 1—yz g y(1—2z2) B
0 (ZZ_YZ)I/Z z 4y z—y ZZ_YZ
172
(z—1Nz—yp)
H _ 2___1, 15
XM +n =29 (z 41Nz +y) 13

Equation (15) reduces to a single term for the case in which either m or n is zero. For example, the two important spe-
cial cases, 4 (0—0;¢) and 4 (0—1;¢), are

28%y
z+Y

A0—-0;e)=

) (16)

—iBN*r fx drz2+!
o exp

20 T 22y
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DRI
BN dr 22+! 28° 1 [a=yPe_ |7 .'5::3:
—i o dtz Y z— =Y w_ (AN
lie)= a7 Totiat!
4 (of’ € Qo1 fo (ZZ_YZ)VZ exp z+y z4+y 209 "":‘:::%:.
N
For the case in which both m and n are equal to one, we obtain KOS
L
~iBNT fw dtz2+! 28y | |zU1—%?) 2 w_(z—1) O
A(l-1le)= . (18) QOO0
R T ke P | e | P e
'.l g‘|'i,
From these amplitudes [Eqgs. (16) through (18)], and from the recursion relations to be derived below, the entire matrix 'i:::i:ﬁ_
for vibrational excitation amplitudes can be obtained (see Sec. III). ‘o‘i:'::::;
For the case in which the oscillator frequencies of both the neutral state and the resonant state are the same (that is, A
o=w_), the integral in Eq. (15) can be carried out. The resulting expression for the vibrational amplitude in this case e
! q
2 ) (m +n—2p)/2 : ‘0'::1’(:
Alm—snie)= —BN?r  lmn)|m | in P! ) IFp—Q)'m +n—2p +1) !.",!.‘,'i
T metmin)'? 2 (PP | 200 Tim +n—p—Q+1) s
LA ¢
®
XP(p —Q,m +n —Q —p + L;0/(2wp)) . (19) by
'l'h‘s.?‘;
Here, ¢ is the confluent hypergeometric function. This expression was obtained earlier for the case m =0 and n arbi- :l:::I::;L
trary by Golubkov et al.,® and in the alternative form of continued fractions for the case m =n =0 by Domcke and ;:‘:!:';;.“
Cederbaum.’ e
'..!Q{“]’,‘
IIL RECURSION RELATIONS -
4
For the special case in which the frequencies of the two oscillators are egual (w=w_), a three-term recursion relation X ":::'
among the vibrational amplitudes was derived by Domcke and Cederbaum.” More general recursion relations among the 4 ,0.::';
amplitudes, for the case in which the oscillator frequencies are not the same (w=£w _ ), are obtained below. The recursion :‘.«::u:j
relation of Domcke and Cederbaum is a special case of these general recursion relations. . .:’t.".'
The vibrational amplitude can be written as a sum of Franck-Condon overlap integrals as in Eq. (4) if the width and - ®
the level shift are taken to be independent of R. Recursion relations among these Franck-Condon integrals have been L
obtained previously®® and can be written as :l‘é;:,:c
Ay'h
(n+ 14w+ _Xn +1|v+1) —2wo_(v+1])"%(n |v) :‘::::":'{
Lt
+n'o_—o)n —1|v+1) —0_(2w/0)) X (n [v+1) =0, (20) e
n 12 1 .‘,
Rev+ D] n |v+1 )= | —— | (@+o_Xn—-1|v)— n+ (w—w_Xn+1]|v) Y (RN
200 _ 200 _ Qi
12 Joa
w_ HIA R AN
— 2= <njwy. @1 SO
R
Using Eq. (21), the terms containing |v+1)) in Eq. (20) can be eliminated, resulting in a five-term recursion relation in \r-(,
which the index v stays constant. Thus, .:a.‘ :
o
[2n (0’ + 02 ) —dwo_(v+ 1)+ o+o_ )+ 200 /og)(n |v) "“;';:o
AW
—20% 20/we) (1 + D" (n +1{vN+n"2(n —1|v)] %&

—(@*—* M[(n +1)n +2)]VHn 42| v +[n(n =DV n =2[+vN}=0. 22

Equation (22) can be used to obtain recursion relations for the vibrational excitation amplitudes. Multiply Eq. (22) by
(m |v))/(Q —v) and sum over v to get

[ 2
S (m v {(n |v) 200 +02) 4+ 400 _(Q —v)—bwo _(Q + 1) +(w+w_ )+ 2‘:“" ]/(Q—w
v=0 0
172
—2t |22 NER {m v {v|n+1) in & Am v vin—1)
(n + v§0 Q—V M \2’0 Q_V
—(@t=a®) |[(n + D0 +2)]'2 3 {m |[vDlvin+2) =1 S {m (oD v e =2 |, 23)

v=0 Q-v
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where 4ww_Q has been added and subtracted in the numerator of the first term. This first term can be rewritten as

& 200’
3, (m |9 v [n) [20(07 402 )+400_(Q —)~doo_(Q +D+w+a )+ o | [1Q—v)
v=0 0
200t | = -
= 2n(0*+ 0% )—400_(Q + 1)+ (v+o_ P+ wco ) {m |Z»«VV|") +d4ow_ S (m |[vI v n) .
0 v=0 - v=0

(24)

Using the completeness relation on the second term in Eq. (24) and using Eq. (5) we obtain the following recursion rela-
tion:

2

20
2n(0*+ 0t ) —4o0o_(Q + 1)+ (w+o_V+ -
(1]

—20% Qo /we)[(n +1)'%a(m—n +1;e)+n'%a(m—n —1;¢)]
—(@* =X )[(n +)n +2))%alm—n +2;€)+[n(n —1)]'%a(m—n —2;¢)}=0. (25)

a(m—n;e)+40w 8y

Note that in this five-term recursion relation among vibrational excitation amplitudes, the initial vibrational level m
and the incident electron energy ¢ is fixed in each term. This, of course, implies that the total energy E =e+ E,, is the
same in each term as it should be. It is possible to obtain an alternative recursion relation among the amplitudes in
which the final vibrational level » is fixed in each term. Such a relationship can be obtained by replacing n by m in Eq.
(22), multiplying the resulting equation by {n | v)) /(Q —v), and summing over v. Additional care must be taken in this

case because the factor Q in the denominator contains m. The resulting recursion relation is

2

2w
2m(0*+ 0t )—4wo_(Q +1)+(o+w_ P+ -~
0

a(m—n;e)+doo_8ny,

202 Qw/we)[(m + 1) %a(m +1—ne—0)+m'2a(m —1—n;e+w)]

—(@? =) {[(m + 1)m +2)]"2%a(m +2—>n;e—20)+[m(m —1)}"2a(m —2—n;e+20)}=0. (26)

Note that the initial vibrational level m is different in
various terms but the final level n is fixed. Furthermore,
the incident electron energy is different, although the total
energy E is the same in each term of the recursion rela-
tion.

The principle of detailed balancing relates the ampli-
tude of the m-to-n transition to the amplitude of the n-to-
m transition, albeit at different incident electron energy
{but at the same total energy), as

Alm—on;e)=An—-m;e+(m —n)o) . 2n

It is easy to see that Eq. (27) also follows from Eq. (5) al-
most by inspection.

From the mere knowledge of the two vibrational ampli-
tudes, 4(0—0;e) and A4 (0—1;¢) at all energies, and us-
ing the recursion relation of Eq. (25), the entire first row
(m =0) of the vibrational amplitude matrix can be ob-
tained. Equation (27) can then be applied to obtain the
first column (n =0). With the additional knowledge of
A(1—1;¢), the next row (or column) can be obtained us-
ing Eq. (25) [or Eq. (26)). Here, it should be noted that
there are two alternative methods for completing the am-
plitude matrix. First, the rows and columns of the entire
matrix can be obtained by successive use of the recursion
relations of Egs. (25) and (26). Second, using the princi-
ple of detailed balancing, Eq. (27), each column {or row)
can be obtained from its corresponding row (or column).
Thus only half of the matrix needs to be built up via the
recursion relations.

IV. DISCUSSION

In the preceding sections we have obtained a summa-
tion expression, Eq. (5), and an integral expression, Eq.
(15), fer the amplitude for resonant vibrational excitation
of a molecule. Useful five-term recursion relations among
these amplitudes are obtained in Egs. (25) and (26) which,
from a mere knowledge of amplitudes for transitions to
only three low-lying levels, would permit a rapid evalua-
tion of vibrational excitation cross sections for any transi-
tion, inelastic or superelastic, for any molecule.

The summation expression of Eq. (5) proved to be more
useful than the integral expressions of Egs. (16) and (17)
when used for evaluation of the amplitudes. This is be-
cause the integrands in Eqs. (16) and (17) for 4 (0—0;¢)
and A(0—1l;e) are rapidly oscillating and require a
prohibitive number of evaluations in order to obtain
sufficient accuracy to be used with the recursion relations.
The summation expression, Eq. (5), on the other hand,
achieves similar accuracy after typically including only 25
terms in the sum, and is to be preferred numerically. Al-
though the integral expression may not appear useful nu-
merically, it can be seen from Eq. (9) that if Agy(x,y)
could be evaluated analytically, then all of the higher-
order transition amplitudes can be determined exactly by
merely taking derivatives of Ay. The recursion relations,
Egs. (25) and (26), can be used for generating the ampli-
tudcs for excitation of higher vibrational levels if
a(0—0;¢), a(0—1;e), and a(l—1;e) are known either

o
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from the summation expression, Eq. (5), or from the in-
tegral expression, Eq. (15). These recursion relations be-
come especially useful for the integral expressions because
the real and imaginary parts of the integrals representing
the lowest-order transition amplitudes (0—0, 0— 1, and
1—1) are easily separable. Furthermore, use of complex
algebra and evaluation of Hermite polynomials can be
avoided in obtaining the higher-order transition ampli-
tudes. It should be noted that use of the recursion rela-
tions [Eq. (26), in particular] requires that the step size in
electron-impact energy should be some proper fraction of
the oscillator excitation energy fiw.

For the case when the frequencies of the two oscillators
representing the potential curves of the molecule and its
anion are equal, the recursion relation, Eq. (25), reduces
to a three-term relation and is identical to the one ob-
tained by Domcke et al.* This three-term recursion rela-
tion among amplitudes is essentially equivalent to a recur-
sion relation among confluent hypergeometric functions®
since for the case of equal-frequency oscillators the excita-
tion amplitude is related to a confluent hypergeometric
function as seen in Eq. (19). As far as we know, the
second recursion relation, Eq. (26), that we have obtained,
in which the final vibrational level is fixed, has not been
obtained earlier in the literature for either equal or un-
equal frequency oscillators. In obtaining Eq. (4) for the
excitation amplitude it was assumed that the width of the
resonance is independent of the internuclear separation.
This assumption led to the Franck-Condon overlap in-
tegrals in Eq. (4) and to the recursion relations in Egs.
(25) and (26) which are merely extensions of the recursion
relations among the Franck-Condon integrals. If, howev-
er, the width I' depends on the internuclear separation,
more general recursion relations among excitation ampli-
tudes can still be obtained by using the recursion relations
among two-center harmonic-oscillator matrix elements.®

In order to illustrate the utility of the recursion rela-
tions derived above, we have numerically evaluated the vi-
brational excitation amplitudes for Li; and N; using Egs.
(5), (7), and (25). The vibrational excitation cross sections
obtained from these amplitudes are displayed in Figs. 2
and 3, respectively. The parameters for the potential
curves of the ground and the resonant anion states for the
two molecules'®~'? used in these calculations are listed in
Table I. Note that the width of the resonance T' is taken
to be energy independent. The level shift A is taken to be
zero. It is easy to verify that the first five vibrational lev-
els of the above simple harmonic oscillators have the same
energy levels, within 5%, as the actual vibrational energy
levels of the ground electronic states of the molecules.
This indicates that the harmonic-oscillator approximation
is reasonable for these levels. The parameters w, w_, r,
and 8E of the lithium system are taken from the recent ab
initic calculations'? of the structure of the ground and ex-
cited states of Li; and Li,~ using the optimized
configuration-interaction (CI) wave functions. Following
Wigner’s threshold law, the width ['(R) of the resonant
state is taken to be of the form I'(R)=ck (R), where k (R)
is the wave number of the electron autodetaching at inter-
nuclear separation R. The constant ¢ is determined'? by,
first, smoothly extrapolating the fully optim.zed orbital
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FIG. 2. Cross sections for the resonant vibrational excitation
of Li; by the impact of low-energy electrons.
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TABLE I. Potential curve parameters in atomic units. The
numbers in square brackets represent powers of ten.

Parameter Li; N2
@ 1.5983[—3] 1.073[—-2]
w_ 1.0519[—3] 8.82[-13]
r 8.0623[—1} 1.638[— 1]
" 6.426[ + 3] 1.2852[ + 4]
SE 9.4979{— 3] 7.38699[-2]
r 2.273{~-3] 6.5[—3]

exponents of the CI wave functions from the variationally
stable region into the autodetaching region. This pro-
cedure yields estimates of the matrix elements coupling
the discrete resonant state and the continuum states
which, in turn, are related to the resonance width via
Fermi’s golden rule. In the present calculations, I'(Ry),
where Ry is the equilibrium internuclear separation of Li,,
is taken as the constant width of the resonant state of
Li;~. The values of the parameters , w _, and 8E for the
molecular nitrogen system are taken from the ab initio
calculations as listed in Ref. 11. The parameters r and T’
were adjusted by starting from the initial values of Golub-
kov et al.,’ such that the calculated vibrational excitation
cross sections agreed as best with the experimental values
as possible.

Figure 2 shows the cross sections for vibrational excita-
tion of Li, by the impact of low-energy electrons. Molec-
ular lithium is isovalent with molecular hydrogen and is
known to exhibit characteristics similar to those of molec-
ular hydrogen in regard to the process of dissociative at-
tachment, which is another resonant process.’> The
lowest resonant state of Li,~ is the 4 23] state. In the
case of molecular hydrogen it is known'* that the contri-
bution of the 22;" resonant state to the vibrational excita-
tion cross sections shows a structureless peak for any in-
elastic transition. It is thus not surprising, based on the
similarities between Li, and H;, that the inelastic excita-
tion cross sections for Li; as shown in Fig. 2 are also al-
most structureless. All of the cross sections show only
one peak, and the location of the peak is roughly the same
for all transitions. Also, there is the possible development
of a second peak in the higher-order transitions
[A(0—4;¢e) and A(0—5;¢)]. Figure 3 shows the cross
sections for the vibrational excitation of molecular nitro-
gen by the impact of low-energy electrons dominated by
the zll, resonance of N,~. Because of the boomerang na-
ture of this resonance, the vibrational excitation cross sec-
tions exhibit a series of spectacular peaks.® It is to be no-
ticed that the present model can successfully account for
occurrence and locations of these peaks in the cross sec-
tions for low-lying transitions. The present model is not
expected to reproduce the cross sections for excitations to
higher vibrational levels!* due to the effects of anharmoni-
city.

The assumption of constant I' in the present calcula-
tions is made for convenience only. Even if I" depends on
the internuclear separation R in some simple analytical
manner, it might be possible® to carry out the two-center
harmonic-oscillator matrix elements analytically. At first

sight, the assumption of constant I' may appear quite
drastic since in the case of N, it has been well estab-
lished,! using the boomerang model, that features of the
excitation cross sections are best obtained when the reso-
nance width is taken as a decreasing function of the inter-
nuclear separation. Then, a strong interference between
the single incident and a single reflected nuclear wave
packet leads to peaks in the vibrational excitation cross
sections of N; which shift to larger energies for excitation
to higher levels. However, since the present model is ex-
pected to be accurate only for low-lying vibrational levels,
the convenient (but not necessary) assumption of constant
I" is reasonable. Furthermore, since all of the results are
analytic, it is hoped that the present model with recursion
relations could be useful for calculations of excitation
cross sections in polyatomic molecules for which ab initio
calculations are relatively tedious.

Finally, we comment on the applicability of the present
model for obtaining resonant contributions to the vibra-
tional excitation of a molecule. The starting point of the
present model is the local equation, Eq. (1), which implies
that the model is valid for energies not too close to the
threshold. Use of a harmonic oscillator to represent the
potential curves implies that the present model would
work best for obtaining cross sections for vibrational tran-
sitions among low-lying levels only. For transitions to
higher vibrational levels where the effects of anharmonici-
ty become important, a similar useful model using Morse
oscillators could possibly be developed.
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APPENDIX

Some of the useful properties of Hermite polynomials
that have been used in various derivations are collected
here.” From the linear generating function of Hermite po-
lynomials,

S H,(0t"/n1=exp(—1242x1) , (A1)

n =0

the following representation for Hermite polynomials is
obtained:

H,(B/A)=A""3/31)]_cexp(— A%*+2Bt) . (A2)

The bilinear generating function of Hermite polynomials
is

— 2 «© H" Hn n
(1_22)—1/2exp yz_ (21—2:2) — 2 (xz)nnl(}’)z .
n=0 .

(A3)

The derivatives of the Hermite polynomials are given by

iH,,(x)=2nH,._|(x) . (A4)
dx

A couple of useful sums of these polynomials are
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s |s|im ; ; ax)+ax; | |s
m— $—m —(ry2 2\(s—j)/2 A alabl et i
2-1 lm] l] a) JH,,,_j(xl)az s—m(X2)=(ai+a3) Hs_] (a%+a%)l/2 ] [}) (AS)
and
[mn) Im | in [m,n) n
o | lp Pi8PHp _,(X)H, _,(x)=3 | lp P2+ 8VPH p n—2p(x) . (A6)
p=0 p=0
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The contributions of higher partial waves to the elastic scattering amplitude are dominated by
long-range interactions which fall off as r =" as r— . Closed-form expressions for the contributions
‘of higher partial waves (2/ > n —3) to the scattering amplitude for various long-range interactions {n

ranging from 3 to 8) are presented.

When the interaction between a projectile and a target
is central, it is convenient to use the method of partial
waves to obtain the elastic scattering amplitude and the
corresponding differential and integrated cross sections.
Each partial wave corresponds to a definite angular
momentum of the system. For a fixed incident energy of
the projectile, the higher partial waves correspond to
larger impact parameters of the incoming projectile. If
the impact parameter is larger than the range of the in-
teraction, the contribution of the corresponding partial
wave to the scattering amplitude, for this particular ener-
gy, is zero. Thus for short-range interactions between
projectile and target only a finite number of partial waves
make contributions to the scattering amplitude. More-
over, the number of contributing partial wavss increases
as the impact energy increases. If the projectile-target in-
teraction has a long-range tail, then, in principle, an
infinite number of partial waves will contribute to the am-
plitude. In practice, the phase shifts of the first few (say,
L) partial waves are computed exactly by solving for the
asymptotic radial part of the wave function and the phase
shifts of the higher partial waves (from L +1 to infinity)
are estimated by the Born approximation using only the
long-range interaction. (For some recent examples see
Refs. 1 and 2.) The purpose of this work is to provide
closed-form expressions for the contributions of the higher
partial waves to the scattering amplitude for various
long-range interactions. As far as we are aware, such a
closed-form expression has been obtained previously only
for the 1/r* potential;® the results for other long-range in-
teractions are new in the present work.

Consider the clastic scattering of a projectile of mass
and energy E =#k?/2u by a central potential ¥ (r) which
results in a change in momentum from #k; to #k, for the
projectile (k;=k;=k). The momentum transfer
fiq=mMk,—k;) is related to the scattering angle 6 by
q=2ksin(@/2). For later convenience we define a quanti-
ty z as z=sin(6/2)=¢/2k. The partial-wave expansion
for the elastic scattering amplitude can be written as

SO)= 3 21+ DTPlcost) m
=0

where the transition matrix elements 7, are related to
the phase shifts §; by

Ty =exp(id;)sin(d;) . 2)

If the quantities T; for !> L are approximated by Tip
which are obtained by using the Born approximation,
then f(6) can be rewritten as

Flo)= %—éo(zz + DT Pilcosd) +Af , (32)
where

Af= %léﬂ(zl +1)T P, (cos6) (3b)

=f5(6)—- %Iéo(Zl + 1T ;3 Pi(cosd) . (3c)

Here fp(0) is the complete scattering amplitude in the
Born approximation, that is,

_ 22U (e 2 sinlgr)
fr0=—24 [rarvior —i—qr (4a)
=_3ﬁlzi Jzdr V(rr? 3 (21 + 1)jAkrPi{cosd)  (4b)
1=0

=+ 3 (21 + 11TiaP(cosd) (40)
1=0

and Tjp is the Born approximation for T;, namely,

Tip=— 3:2—" J2dr vinrtitien . 0

Now, since only the long-range part of the interaction
contributes to phase shifts of higher partial waves, it is
reasonable to take for V'(r), in Eq. (5), a general spherical-
ly symmetric potential of the form

Vir)=Chal~le*/r. (6)

Here ag=#/me? is the Bohr radius, —e and m are the
charge and mass of an electron, and C, are dimensionless
coefficients. For certain values of n the two terms on the
right-hand side of Eq. (3c) could be individually singular
but the difference, namely, Af is always finite and non-
singular. Substituting from (6) into (5) and using Eq.
6.574.2 of Ref. 4 one obtains

1458 © 1987 The American Physical Society
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n 3 n o1 projectile in motion and a neutral polaiizable target, the

: r 1—3"*‘5 r 273 leading correction term behaves® asymptotically as 1/r°.

T =_&}.‘_‘/;( kag)* ~2 The 1/r? retardation effect also appears when applied to
2 m n 1 n an electron-ion system with the electron bound in a high

r > [P+ 2ty Rydberg state.”'" This term, which is an addition to the

(7
The conditions of validity for this expression are
n>1, I>(n-=-3)/2. (8)

Table I shows explicit expressions for T3 for values of n
from 3 to 8. The corresponding long-range interactions,
along with their possible applications in atomic and
molecular physics, are now discussed individually.

(i) n =3. A potential of the form 1/r3 appears as the
leading retardation term (that is, the effect of the finiteness
of the speed of light) for electron-electron interactions.>®
In a different context, when two identical neutral atoms,
excited to different degrees, exchange a photon it leads’ to
a “resonance interaction” of the form 1/r3. Using the ex-
pression for Tz for n =3 in Table I and the sum

@ (2] 4+1)P;(cosB)
SJ—IEI I(I_+1) = ~—1-2In(2) (9a)

where z =sin(6/2), we obtain the following closed-form
expression
ua L (21 +1)P;(cosB)

oCs
- l+2h1(z)+l=l TS, . (9b)

Af=

(i) n =4. The case of 1/r* potential, perhaps the most
well known in atomic physics, arises as the leading term,
in the adiabatic approximation, in interactions of a
charged projectile (electron, ion, positron) with a neutral
polarizable target. Again using the relevant entry in
Table I for Tz and

o Pi(cosB) z

S=Zae-n 2 (108
the closed form expression for Af becomes
2mukalCy [z L P;(cos8)
=54+, «
A== 2t Grya—n |* O

with z=sin(6/2). This expression has previously been
obtained by Thompson.}

(iii) n =5. When retardation effects are taken into ac-
count for interactions between a structureless charged

1/r* polarization potential, vanishes in the nonrelativistic
limit. Again using the resuits in Table I and
© (2] +1)P;(cosB)

1 Z2 2
= == _E 127
Ss= X i+ niu—1 "3 ¢ TG,

(11a)

the closed form expression for Af in this case can be writ-
ten as

2ukiadC 2
Surasts |1 27 o)

Af=—
S Im |3 6

L (2 +1)P(cosB)
,§2 d+2)1+00d -1 |’

(11b)

where z =sin(6/2).

(iv) n =6. A long-range potential of the form 1/7% ap-
pears in various applications in atomic and molecular
physics. First, the nonrelativistic van der Waals interac-
tion between two neutral atoms, each in its lowest energy
state, behaves as 1/r® for separations much larger than
the Bohr radius.!" Next, the second term in the interac-
tion energy between a charged projectile and a neutral po-
larizable target behaves, in the adiabatic approximation, as
1/r5. Third, the leading nonadiabatic correction to the
dipole term in the interaction between a charged projectile
and a neutral polarizable target behaves asymptotically as
1/r%.12 In these cases one can use

© P)(cos8) z3

S6=l§o(21+5)(21+3)(21_l)(21__3) =18 (12a)

and the results of Table 1 to obtain the following closed-
form expression for Af,

6muk3a¢Cs
Af=—
23 L P[(COSO)
X|===+ »
18 * /o (21 45021 +3)(21 —1)21 —3)

(12b)

where, as before, z =sin(6/2).

TABLE 1. Explicit expressions for T3 for various long-range interactions.

Condition of

m(kag)*~" .
n _T B validity
3 111 +1)] I>1
4 2 /{21 + 3021 +1)(21 - 1)) I>1
5 2/[3 +2X1+ DU =1)] 1>2
6 6m/[(21 +5)(21 + 302 + 1021 —1)21 =3)) 1>2
7 8/015(1 +3)1+2)1 + DI — 1) =2)] >3
8 20m /(21 + T2 45020 4+ 3021 + 1)(21 — 121 — 32! - 5)] 1>3
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(v) n =7. When retardation effects are taken into ac-
count the interaction between two neutral atoms in their
lowest energy states behaves as 1/77 for extremely large
atom-atom separations.'®!> This interaction is a replace-
ment for and not an additive correction to the nonrela-
tivistic van der Waals interaction. Using the appropriate
entry from Table I and

S = = (2! + 1)P;(cosO)
7—,§3 (432X + DI -1 =2)

. 22 1z
—240 5 +80—- 5 In(z) , (13a)

the closed-form exprecsion for Af becomes
J

8uk*adC,| — 2
Suk aogty _43 4 E———I--Q-—ln(z)

Af=
=" m | 2407 T 5 T30

+2 (21 +1)P;(cosB)
LU+ 2+ DI -1 =2) |’

(13b)
where z =sin(6/2).

(vi) n =8. In investigations of the Rydberg states of
helium it is noted that terms up to 1/r% in the polariza-
tion potential arising in the ion-core—electron interaction
contribute significantly to the energy levels.'*!> With the
anticipation that interaction terms behaving asymptotical-
ly as 1/r® might also contribute significantly to scattering
processes, we provide the following closed-form expres-
sion for Af for this case,

2011’“’( 5a 8Cg z 5 P [(COSG )
=" 08 14
af m 450 2 0 (20 +T)21 +5)21 +3)(21 —1)(2] —3)2] -5) (14a)
|
ith z=sin(6/2), using th Its in Table I and th = Pi(cos)
withz=sim usine °;T" 0)"’ able [ and fe siin 2—(’1 = (22722422~ Din[z(1+2)] , (160
L 1{COs 1=2 -
Sy= § (21 +T7X21 +5X21 +3)21 —1)21 —3)2] --5)
1=0 = Pi(cos@) . 3 2
s 2 1—2) =(—7z*+62°+52°~4z)
-0 (14p) =3
—(6z*—6z%2+ infz(1+2)] , (16g)

The closed-form expressions [Egs. (9b), (10b), (11b),
(12b), (13b), and (14a)] for Af for various long-range po-
tentials depend crucially on the evaluation of sums §;,
i=3,...,8 [Egs. (9a), (10a), (11a), (12a), (13a), and
(14b)]. These sums can be obtained as follows. On multi-
plying both sides of the generating function

3 t!Py(cosf)=(1—2t cosf+12) 72 (1s)
=0

by t™ (m=-3,—-2,—1,0,1,2,3) and integrating with
respect to ¢t from O to 1, one can establish the following
sums:

P[(COSO)

——=(202°—10z*— P2 +10z>+ 6z — §)
120 (I+4) 3 ry
4+(—202%+30z4—122241)
XIn(14+1/2), (16a)
= Pi(cos@)

——— =(—6234+322+4z-2)

lgo (1+3) 2
+(62*— 622+ DIn[(1+2)/2], (16b)
hd P[(COSB)
2z —D+(=2z2 4+ DIn[(1+2) /2], (16
Eo (142) +(=2z°+DIn[(1+2)/2] , (16c)
= Pi(cosf)

S —m[(142)/2] 16d
Zuyn ~hli+a/z] (16d)
= P(cosG)

2 ' =—In[z(1+2)], (16e)

where z=sin(68/2). Now the sums S3, Ss, and S7 can be
easily evaluated by first doing the partial fractions of the
summand and then using the sums of Eq. (16). The sums
S, S¢, and Sg are evaluated by first doing the partial frac-
tions of the summand, then using

p sinf dP;(cosf)

[and similar lengthy relations for (P; ,—P)_;)/(2]1 4+1)
and (P,,.3—P;_3)/(21+1)] and eventually utilizing the
sums of Eq. (16). It is rather remarkable that after many
pages of algebra the sums Sy, S, and S turn out to be as
simple as in Eqs. (10a), (12a), and (14b), which suggests
that there could be an easier and perhaps more general
procedure {(which obviously eluded us) of evaluating sums
of this kind.

Finally we comment that in the present work the con-
tributions of higher partial waves to the elastic scattering
amplitude for various long-range interactions are taken
into account via the first Born approx: aation. It is now
possible to include, in principle, the additional correction
terms via the second Born approximation since an exact
analytical expression for the second Born contribution to
the transition matrix elements 7, for any long-range in-
teraction has been obtained recently by Wadehra.'®

It is a pleasure to thank Professor Larry Spruch for a
helpful conversation. This research has been supported,
in part, by the Air Force Office of Scientific Research un-
der Grant No. AFOSR-84-0143.
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B-5 Digsociative Attachment in Low-Energy e + Li,
Collisions, H. H. MICHELS* and J. M. WADEHRA**, AFWAL/
APL, Wright-Patterson AFB, OH, 45433--A study of disso-
ciative attachment (DA) in e + Li; collisions has been
initiated based on ab initio calculations of the perti-
nent potential energy curves and capture widths. For
collision energies less than 1.4 eV, DA occurs only on
the lowest 22; state of Li}. We find that this state
crosses the ground lrt state at Ry = 3.45 &, close to
the sixth vibrational level of Li,, The imaginary part
of the 22} potential has been calculated by analytic
continuation of a discrete representation of e + Li, and
the autoionizing region of this potential has been
treated using the stabilization method. This resonant
state of Li} is of the Feshbach type. Our preliminary
studies indicate that DA should increase for vibra-

tionally excited Li,, a result similar to that found for
e+ H
2-

Permanent addresses: *UTRC, East Hartford, CT, 06108;
**Wayne State U., Detroit, MI, 48202. Work supported in
part by AFOSR under Contract F49620-83-C-0094.
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DISSOCIATIVE ELECTRON ATTACHMENT TO MOLECU! AR LITHIUM

TOHOREALN TNV UVUTLUW WLV :

[

Presented at the fourteenth
International Conference on
the Physics of Electronic and
Atomic Collisions, Paly Alto,
California, July 24-30, 198%

J. M. Hadehra' and H. H. Michels®

*
*Department of Physics, Wayne State University, Detroit, Michigan 48202 USA

United Technologies Research Center, East Hartford, Connecticut

The fact that both molecular lithium (Liz) and
molecular hydrogen (Hz) are 1soelectronic in the valence
shell suggests that the rates of electron attachment to
these two molecules might also be guite similar. In
fact, preliminary results of recent experiments]
indicate that the maximum rate for electron attachment
to Li, is about 1078 cm: sec™! which is comparable to
the corresponding value® for HZ.

Both experimental observations as well as
theoretical calculations for H2 indicat92 that
~ovibrational excitation of the molecule can enhance
the electron attachment rate by several orders of
magnitude. The aim of present studies is to investi-
gate whether a similar strong enhancement of the
attachment rates occurs for Li, on increasing the
temperature.

Figure ! shows the potential curves of some low
lying electronic states of Li, andzLié. The lowgs} two
states of anion Lié, namely the X ZJ and the A °7
states, possess the same electronic symmetry as the
lowest two states of HE. However, due to large

16 T T T v T T
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4 2 3 a5 ] TV
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FIGURE 1 Potential energy curves for dissociative
electron attachment to Li,y.

06108 USA

polarizability and weak bond strength, the X 22: state

of Li2 is a true bougd state for all internuclear

separations. The A “I' state, on the other hand, is

bound only for R » 6.51 a.u. For smaller internuclear

separations, this state is the lowest resonance of Lié.
A semiclassical approach utilizing the local-width

resonance model is used to obtain the cross sections

and rates for dissociative attachment to Liz‘ The

resonance width for the A ZZ‘ state is parametrized 1n

atomic units as T(R) = 0.0143 k(R), where k(R) is the

Tocal wave number of the attached electron. The

behavior of the 2ttachment cross section is investigated

both as a function of the incident electron energy for

a given rovibrational state of the molecule Li2 and as

a function of the internal energy of the molecule for

a fixed incident electron energy.

This research is supported by AFOSK under Grant
AfOSR-84-0143 and Contract F49620-83-C-0094.
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and Neutralization of Negetive lons and Beams,
edited by K. Prelec {American !n<titute of Physics,
New York, 1984}, p. 291,
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CA-5 Vibrational £xcitation of Diatomic Molecules
(NZ’ co, Liz) during Resonance Scattering of Electrons,*

J.M. WADEHRA and P.J. DRALLOS, Wayne State University--
A one dimensional integral expression is obtained for
the cross section for resonant vibrational excitation of
diatomic molecules. The potential energy curves for
both the neutral molecule as well as the resonant state
are approximated by one dimensional harmonic oscillators
having arbitrary curvatures and equilibrium positions.
Results of the computations are obtained for the mole-
cules N, and CO, and are in good agreement with
experimént. Results for resonant vibrational excitation
cross sections for Li2 are also presented.

*Work supported by AFOSR Grant 84-0143
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LC-6 Dissociative Electron Attachment to the Isotopes
of Molecular Hydrogen,* J. M. WADEHRA, Wayne State U.--
Using a local width model, the cross sections for dissoc-
iative electron attachment to rovibrationally excited
isotopes (HD, HT, D,, DT and T,) of H, are obtained. For
a given rovibrational level, the factor by which the peak
attachment cross section alters on isotope substitution,
varies from about 10 to 65000. For a given isotope, the
factor by which the peak att: hment cross section is
altered on exciting the molecule vibrationally from v=0
to v=1, varies from about 39 to 61. For a given isotope,
the factor by which the peak attachment cross section is
altered on exciting the molecule rotationally from J=0 to

J=10, varies from about 12 to 6. The reasons for these
observations will be given.

*Supported by AFOSR Grant Number 84-0143.
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Presented at the Fifteenth International
Conference on the Physics of Electronic
and Atomic Collisions, Brighton,
United Kingdom, July 22-28, 1987.

ELASTIC SCATTERING OF POSITRONS FROM ARGON

J. M. Wadehra and Sultana N. Nahar

Department of Physics and Astronomy , Wayne State University, Detroit, M1 48202 {'SA

Differential and integrated cross sections for the elastic scattering
of low- and intermediate-energy (3 - 300 eV) positrons and electrons
by argon atoms are calculated. Mode! potentials are used to represent
the interactions between positrons or electrons and argon atoms. For
each impact energy, the phase shifts of the lower partial waves are
obained exacdy by numerical integration of the radial equation. The
Bomn approximation is used to obtain the contribution of the higher
partial waves to the scatiering amplitude.

The model potential for positron argon interaction contains the
static potential of the target atom and Buckingham type polarization
potential with an adjustable parameter d. The electron argon interaction
is represented by the target static potential (with proper sign),
Buckingham type polarization potential with the parameter d and
exchange potential. The value of d. which depends on the projectile
impact energy, is determined by firting the calculated electron-argon
scattering cross sections (i.c.. differential, integrated and momentum
transfer cross sections) and phase shifts with the measured values of
the same for a panticular energy. Then the same value of d is used for
the calculation of cross section for positron scattering from argon.
When normalized at 90°, the relative values of the differential cross
sections for the elastic scattering of positrons from argon measured by
Hyder et al.! agree well with the present calculations as shown in Fig.
1. Presendy the group of Kauppila and Sicin? is making measurements
for positron scatiering from argon a1 lower impact energies. Their
preliminary results are showing encouraging agreement with the
present calculations.

Suppport of NSF and AFOSR is gratefully acknowledged.
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: A SIMPLE MODEL FOR THE RESONANT VIBKATIONAL EXCITATION OF MOLECULES :
. :
Presented at the Fifteenth International P.J. Drallos and J.M. Wadehrs '
Conference on the Physics of Electronic t:
and Atomic Collisions, Brighton, N
United Kingdom, July 22-28, 1987. Department of Physics and Astronomy, Wayne State University L
Detroit, Michigan 48202 N
K
It has been well established that the phenomenon of v
vibrational excitation of a molecule by electron impact : dl l (zﬁ 1)( ) [T(1 11)] )
is dominated by resonance formation . The nonresonant Z)ln it :
contribution to the vibrational excition 1e ususlly H { [ 2 (z- l)(l'r)] } ey :
wmall. Here we present a c.csed-form expression for the men-2p (z+1)(z+Y)
resonant contribution to the amplitude for vibrational vhere z=exp(it) and B, N, a, B, yand .. &re constants. ]
excitation of a molecule by electron impact using a As we will show, knowledge of only three low-lying i:
simple model. Also, simple recursion relations among transitions 16 required to obtain the entire matrix for $
the excitation azplitudes are obtained which are valid vibrational excitation amplitudes. :
for both inelastic and superelastic transitions. Recursion relations among the Franck-Condon .
In the wodel we are proposing here, the potential integrals allow us to write recursion relations smong i
curves of the electronic states of the wolecule and of the vibrational excttation amplitudes. These recursion .
the resonant anion state are replaced by those of two relations are: 2 .{
simple harmonic oscillators of arbitrary frequencies, 2 2 200 o_f
curvatures, and equilibrium internuclear separations. (20w ﬂn'z)-m'(Q¢l)*(m*m') * ﬁ)o ].(an;C)*m’sm‘“ 'E
The resonance width I and the level shift 4 are taken to .20,_2(2@/@0)1”[(",))ln.(m_nﬂ;g) ,nln.(mqn.l;;)] .‘
be independent of the internuclear separation R. The 2 2 2 U
nuclear wave function of the intermediate resonant (o 'm.){[(n+l)(n+2)] a(m—n+2ie)
state, by which the process of vibrational excitation *l“(“'l)]ml(m"n'z;f)} =0, (3a)
proceeds, is obtained in the local-width approximation. 2 “n
This implies that the model fe valid for energies not [Zm(wzm_l)-m_(Q*l)*(w*ﬁ))z* 2“:0-].(,”__“;:) msu o
too close to the threshold. The use of harmonic oscil- 2 2 n 0 n ]
lators to represent the potential curves implies that 20).(20#&() [(m’l) a(m+1—pie-) + m l(m-l-n;c«n)] 9
the present model would be best suited for vibratiomal -(ma.@_z){|(m+l)(m+2)]‘nl(m+2—n;t-zm) -
transitions among low-lying lev;h only. +lm(m-l)]ml(m-z-‘n;t*Zm)}: O, (3b) ~
With the above approximations, the vibrational 3
transition amplitude can be written as As an 1llustration of the utility of the recursion &
. r2 2 relations derived above, we have numericelly evaluated
A(m--n;¢) —';‘ kk ) a(m—n;e) (lz) the vibrstional excitstion amplitudes for LI and N .:
vhere using Eqs. (1) and (3a). The inelastic excitstion cross
icllv>><<vlm> sections for Li show characteristics similar to those B
l(m-n:£)=“o Gv {1b) of molecular hydrogen as expected. The present model :
aleo successfully accounts for the experimentally :‘
and Q is a constant that depends on the electron impact observed spectacular peaks in the cross sections for low \
energy ¢ . Note that <n|,>> and << |m> are Franck-Condon lying transitions of Nz. “:
overlap integrals between vibrational levels of the 1
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Eq. (1) will then involve two finite sums and one infi- 0
nite sum wvhich can be reduced to & single finite sum and References .:
a one-dimensional integral: ‘
Nz 1. J.M. Wadehra, in Nonequilibrium Vibraticnal Kinetics, .
A(m"“'t)zlgmﬂ E (m)( )p|2P ed. M. Capitelll (Springer-Verlag, Heidelberg 1986). rd
™ Y
2. P.J. Drallos and J.M. Wadehra, J. Chem. Phys. 85, ::
6524 (19B6). \
N



Presented at the NATO Advanced Research
Workshop on Atomic Physics with
Positrons, University College London,
United Kingdom, July 15-17, 1987.

ELASTIC SCATTERING OF POSITRONS FROM ARGON

J. M. Wadehra and Sultana N. Nahar

Department of Physics and Astronomy, Wayne State University

Detroit, Michigan 48202, USA

Differential and integrated cross sections for the elastic
scattering of low- and intermediate-energy (3 - 300 eV) positrons and
electrons by argon atoms are calculated using partial wave method. Model
potentials are used to represent the interactions between positrons or
electrons and argon atoms. For each impact energy, the phase shifts of
the lower partial waves are obtained exactly by numerical integration of
the radial part of the Schrodinger equation. The Born approximation is
used to obtain the contribution of the higher partial waves to the
scattering amplitude.

The model potential for positron—argon interaction contains the
static potential of the target atom and a Buckingham type polarization
potential with an adjustable parameter d. The electron—-argon interaction
is represented by the target static potential (with proper sign), the
Buckingham type polarization potential with parameter d and an exchange
potential. The value of the parameter d, which depends on the projectile
impact energy, is determined by fitting the calculated electron-argon
scattering cross sections (i.e., differential, integrated and momentum
transfer cross sections) and the phase shifts with the measured values
of the same for a particular energy. Then the same value of d is used
for the calculation of cross sections for positron scattering from argon
at the same impact energy. When normalized at 90°, the relative values
of the differential cross sections for the elastic scattering of
positrons from grgon at impact energies of 100, 200 and 300 eV measured
by Hyder et al. agree well with the present calculations as shown,in
Fig. 1 on the next page. Presently the group of Kauppila and Stein” is
making measurements for positron scattering from argon at lower impact
energies. Their preliminary results are showing encouraging agreement
with the present calculations.
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Fig. 1. Differential cross sections for the elastic
scattering of positrons by argon at various impact energies.
Solid lines are the present theoretical curves. The number
in parenthesis following an energy value indicates the power
of ten by which the cross section values are wmultiplied. The
experimental values are from Ref. 1.
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POSITRONIUM FORMATION FROM ATOMIC HYDROGEN

J. M. Wadehra and Sultana N. Nahar
Department of Physics and Astronomy, Wayne State University

Detroit, Michigan 48202, USA

The first Born approximation and the distorted wave Born
approximation are used to calculate the cross sections for positronium
(Ps) formation in all bound states by the impact of intermediate energy
(20 - 500 eV) positrons on atomic hydrogen. Differential and integrated
cross sections for the formation of Ps(ls), Ps(gs), Ps(2p,.) and
Ps(2p,) are calculated individually and the 1/n” behavior (n being the
principal quantum number) for charge transfer cross sections is used for’
n > 3 to obtain the total cross sections for positronium formation. The
formation of Ps in s-state is evaluated using formulation of the
distorted wave Born approximation similar to that described in Ref. 1.
All calculations are carried out using the prior form of the
‘interaction. The p-state wave functions of Ps, unlike spherically
symmetric s-state wave functions, are angle dependent and introduce
complexity in the calculations of capture cross sections. The complexity
is reduced by expressing the angle dependent part of the wave function
in terms of an exponential factor. It is observed in the present
calculations that the cross section for Ps formation in n = ] state
dominates significantly over that for n = 2 state. No experimental
values of cross sections for Ps formation from atomic hydrogen are
available at present. The present results for the formation of Ps(ls)
compare” favorably with some of the other theoretical investigations.
The features of the present differential cross section curves for Ps
formation showing a large maximum in the forward direction followed by a
minimum also agree well with works of other investigators. The total
cross sections for the formation of Ps in all bound states at various
impact energies are shown in Fig. 1 on the next page.
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Fig. 1. Total integrated cross sections for positronium
formation from atomic hydrogen at various positron impact
energies.
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A SIMPLE MODEL FOR THE RESONANT VIBRATIONAL EXCITATION OF MOLECULES

P.J. Drallos and J.M. Wadehra
Department of Physics and Astronomy, Wayne State University
Detroit, Michigan 48202

It has been well established that the phenomenon of vibrational excitation
of a molecule by electron impact is dominated by resonance formation[1]. The
nonresonant contribution, which is important for the elastic scattering of
electrons by a molecule, to the vibrational excitation is usually small. For
example, the spectacular peaks in the cross sections for vibrational excitation
of molecular nitrogen can be satisfactorily reproduced only by using a proper
resonance model, Here we present a closed-form expression for the resonant
contribution to the amplitude for vibrational excitation of a molecule by
electron impact using a simple model. Also, simple recursion relations among
the excitation amplitudes are obtained which are valid for both inelastic and
superelastic transitions.

In the model we are proposing here, the potential curves of the electronic
state of the molecule and of the resonant anion state are replaced by those of
two simple harmonic oscillators of arbitrary frequencies, curvatures,
equilibrium internuclear separations and energy separation. The resonance
width r and the level shift 5 are taken to be independent of the internuclear
separation R. The nuclear wave function of the intermediate resonant state, by
which the process of vibraticral excitation proceeds, is obtained in the
local-width approximation. This implies that the model is valid for energies
not too close to the threshold. The use of harmonic oscillators to represent
the potential curves implies that the present model would be best suited for
obtaining cross sections for vibrational transitions among low-lying levels
only.

From the approximations above, the vibrational transition
amplitude can be written as

om rz 12

A(m-—-n;e) = e -k—k—) a(m—n;e) (1a)
. if

where

ii<3ﬂv>a><<adnm>

v=0 Q‘V ( lb)

and Q is a constant that depends on the electron impact energy e. Note that
<njv>> and <w|m> are Franck-Condon overlap integrals between vibrational
levels of the initial electronic state of the target and those of the resonant
anion state. Each of these Franck-Condon integrals can be written in closed
form as a finite sum[2]. Evaluation of Eq. (1) will then involve two finite
sums and one infinite sum which can be reduced to a single finite sum and a
one-dimensional integral. As we will show, knowledge of only three low-lying
transition amplitudes, in particular a(0+0;c), a(0+l;e) and a(lal;e), is
required to obtain the entire matrix for vibrational excitation amplitudes.
Explicit expressions for these amplitudes are:

a(m—n;e) =

SBNTT ] a 27 2 Bzy
AQ—0) = 207 02" exp (-zTy) (2a)
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2
4BN’T dt 22 2BV [20-DT[ 2, wed
A(l—-1e) = I PEN T ( z+y)[ ][zv 20(z+7) (2¢)

where z=exp(it) and B, N, o, B, v and w_ are constants.
Recursion relations among the Franck-Condon integrals{2] allow us to write
recursion relations among the vibrational excitation amplitudes. These

recursion relations are: )

) 7 200
[2n(w +m_z)-4mw_(Q+l)+(m+m) + P
0
'2“’.2 (w/ (Do)m[(n'*l)ma(m—-nﬂ i€) + nma(m-—n- 1 ;e)]

] a(m—~ni€) + 4008

-@"0)) { [(n+1)0+2)) Pam—n+2ie) + [no-1) Pam—-n-2)} =0.  (34)
2

2
[Zm(mz-ﬂnz) - 400 (Q+1)+(0+w® )2+ 0. ] a(m—n;e) +400 8

0
-2m_(2(0/m0)l,2[(m+l) a(m+1—on e-m) + ml,2 a(m- 1—~n,e+m)]
-(m %0 { [(m+1)(m+2)) Pa(m+2~n;e-20) + [m(m-1)]a(m-2—n; £+20))} 0, (3b)

tote that in Eq. (3a) the initial vibrational level m and the incident electron
energy e are fixed in each term. In Eq. (3b), however, the initial vibrational
level m is different in various terms but the final level n is fixed.
Furthermore, the incident electron energy is different although the total
energy is the same in each term of the recursion relation.

As an illustration of the utility of the recursion relations derived above,
we have numerically evaluated the vibrational excitation amplitudes for Li, and
using Eqs. (1) and (3a). The inelastic excitation cross sections for L?

sﬁow characteristics similar to those of molecular hydrogen as expected.
Exper1menta]1y the vibrational excitation cross sections for N, exhibit a
series of spectacular peaks. The present model can successfu]%y account for
occurence and locations of these peaks in the cross sections for low lying
transitions.

The support of the Air Force Office of Scientific Research through Grant
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